Chaotic dirac billiard in graphene quantum dots

被引:1889
作者
Ponomarenko, L. A. [1 ]
Schedin, F. [1 ]
Katsnelson, M. I. [2 ]
Yang, R. [1 ]
Hill, E. W. [1 ]
Novoselov, K. S. [1 ]
Geim, A. K. [1 ]
机构
[1] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[2] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1126/science.1154663
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (> 100 nanometers), they behave as conventional single- electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular- scale electronics based on graphene.
引用
收藏
页码:356 / 358
页数:3
相关论文
共 21 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[3]   NEUTRINO BILLIARDS - TIME-REVERSAL SYMMETRY-BREAKING WITHOUT MAGNETIC-FIELDS [J].
BERRY, MV ;
MONDRAGON, RJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 412 (1842) :53-74
[4]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[5]   Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots [J].
Bunch, JS ;
Yaish, Y ;
Brink, M ;
Bolotin, K ;
McEuen, PL .
NANO LETTERS, 2005, 5 (02) :287-290
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Effects of molecular properties on nanolithography in polymethyl methacrylate [J].
Dobisz, EA ;
Brandow, SL ;
Bass, R ;
Mitterender, J .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (01) :107-111
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]  
Guhr T, 1998, PHYS REP, V299, P190
[10]   Semiconducting graphene nanostrips with edge disorder [J].
Gunlycke, D. ;
Areshkin, D. A. ;
White, C. T. .
APPLIED PHYSICS LETTERS, 2007, 90 (14)