Traps in germanium nanocrystal memory and effect on charge retention: Modeling and experimental measurements

被引:58
作者
Koh, BH
Kan, EWH
Chim, WK
Choi, WK
Antoniadis, DA
Fitzgerald, EA
机构
[1] Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Singapore MIT Alliance, Singapore 117576, Singapore
[3] MIT, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1931031
中图分类号
O59 [应用物理学];
学科分类号
摘要
Surface traps, or traps at the interface of the nanocrystal and the surrounding matrix, play an important role in the charge retention performance of nanocrystal memory transistors. In this article, we report the investigation of trap energy levels in nanocrystalline germanium (nc-Ge) memory transistor and capacitor structures and their effect on the device charging and discharging kinetics through theoretical modeling and experimental measurements. The theoretical model, calibrated using the experimental data, uses a self-consistent quantum-mechanical tunneling numerical approach for calculating the transmission coefficient across the tunnel barrier. The effect of the trap energy on charge retention is shown by temperature-dependent measurements on the nc-Ge memory structures. The trap energy-level requirement for achieving a specified long-term charge retention performance (i.e., 10-yr retention time) is obtained from simulation as a function of the nanocrystal size. (c) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Engineering on tunnel barrier and dot surface in Si nanocrystal memories [J].
Baik, SJ ;
Choi, S ;
Chung, UI ;
Moon, JT .
SOLID-STATE ELECTRONICS, 2004, 48 (09) :1475-1481
[2]   Discharge mechanisms modeling in LPCVD silicon nanocrystals using C-V and capacitance transient techniques [J].
Busseret, C ;
Souifi, A ;
Baron, T ;
Guillot, G ;
Martin, F ;
Semeria, MN ;
Gautier, J .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (5-6) :493-500
[3]   Materials issues for layered tunnel barrier structures [J].
Casperson, JD ;
Bell, LD ;
Atwater, HA .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (01) :261-267
[4]   Self-interstitial defect in germanium [J].
da Silva, AJR ;
Janotti, A ;
Fazzio, A ;
Baierle, RJ ;
Mota, R .
PHYSICAL REVIEW B, 2000, 62 (15) :9903-9906
[5]   Irradiation-induced defects in Ge studied by transient spectroscopies [J].
Fage-Pedersen, J ;
Larsen, AN ;
Mesli, A .
PHYSICAL REVIEW B, 2000, 62 (15) :10116-10125
[6]  
Grabert H., 1992, Single Charge Tunneling
[7]   Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy [J].
Haesslein, H ;
Sielemann, R ;
Zistl, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2626-2629
[8]   ELECTRON-HOLE RECOMBINATION IN GERMANIUM [J].
HALL, RN .
PHYSICAL REVIEW, 1952, 87 (02) :387-387
[9]   Origin of charge trapping in germanium nanocrystal embedded SiO2 system:: Role of interfacial traps? [J].
Kan, EWH ;
Choi, WK ;
Chim, WK ;
Fitzgerald, EA ;
Antoniadis, DA .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (06) :3148-3152
[10]   Effect of annealing profile on defect annihilation, crystallinity and size distribution of germanium nanodots in silicon oxide matrix [J].
Kan, EWH ;
Choi, WK ;
Leoy, CC ;
Chim, WK ;
Antoniadis, DA ;
Fitzgerald, EA .
APPLIED PHYSICS LETTERS, 2003, 83 (10) :2058-2060