Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors

被引:10
作者
Chan, Kah-Yoong [1 ,2 ]
Knipp, Dietmar [1 ]
Gordijn, Aad [2 ]
Stiebig, Helmut [2 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany
[2] Forschungszentrum Julich, IEF Photovolta 5, D-52425 Julich, Germany
关键词
silicon; thin-film transistors;
D O I
10.1016/j.jnoncrysol.2007.09.035
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influence of the crystalline volume fraction of hydrogenated microcrystalline silicon on the device performance of thin-film transistors fabricated at temperatures below 200 degrees C was investigated. Transistors employing microcrystalline silicon channel material prepared close to the transition to amorphous growth regime exhibit the highest charge carrier mobilities exceeding 50 cm(2)/V s. The device parameters like the charge carrier mobility, the threshold voltage and the subthreshold slope will be discussed with respect to the crystalline volume fraction of the intrinsic microcrystalline silicon material. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2505 / 2508
页数:4
相关论文
共 25 条
[1]   Defect density and recombination lifetime in microcrystalline silicon absorbers of highly efficient thin-film solar cells determined by numerical device simulations [J].
Brammer, T ;
Stiebig, H .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (02) :1035-1042
[2]   Carrier mobilities in microcrystalline silicon films [J].
Bronger, T. ;
Carius, R. .
THIN SOLID FILMS, 2007, 515 (19) :7486-7489
[3]   Influence of contact effect on the performance of microcrystalline silicon thin-film transistors [J].
Chan, Kah-Yoong ;
Bunte, Eerke ;
Stiebig, Helmut ;
Knipp, Dietmar .
APPLIED PHYSICS LETTERS, 2006, 89 (20)
[4]   Influence of low temperature thermal annealing on the performance of microcrystalline silicon thin-film transistors [J].
Chan, Kah-Yoong ;
Bunte, Eerke ;
Stiebig, Helmut ;
Knipp, Dietmar .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (07)
[5]   Evolution of nanocrystalline silicon thin film transistor channel layers [J].
Cheng, IC ;
Allen, S ;
Wagner, S .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 :720-724
[6]   Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150°C [J].
Cheng, IC ;
Wagner, S .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :440-442
[7]   Hydrogenated amorphous silicon thin-film transistor with a thin gate insulator [J].
Choi, YJ ;
Kwak, WK ;
Cho, KS ;
Kim, SK ;
Jang, J .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (01) :18-20
[8]   INSITU ELLIPSOMETRY OF THIN-FILM DEPOSITION - IMPLICATIONS FOR AMORPHOUS AND MICROCRYSTALLINE SI GROWTH [J].
COLLINS, RW ;
YANG, BY .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1989, 7 (05) :1155-1164
[9]   Extended phase diagrams for guiding plasma-enhanced chemical vapor deposition of silicon thin films for photovoltaics applications [J].
Ferlauto, AS ;
Koval, RJ ;
Wronski, CR ;
Collins, RW .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2666-2668
[10]   Electronic states in hydrogenated microcrystalline silicon [J].
Finger, F ;
Muller, J ;
Malten, C ;
Wagner, H .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (03) :805-830