Probing the phase composition of silicon films in situ by etch product detection

被引:18
作者
Dingemans, G.
van den Donker, M. N.
Gordijn, A.
Kessels, W. M. M.
van de Sanden, M. C. M.
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] Forschungszentrum Julich, IEF5 Photovoltaik, D-52425 Julich, Germany
[3] Solland Solar Cells BV, NL-6422 RL Heerlen, Netherlands
关键词
D O I
10.1063/1.2799738
中图分类号
O59 [应用物理学];
学科分类号
摘要
Exploiting the higher etch probability for amorphous silicon relative to crystalline silicon, the transiently evolving phase composition of silicon films in the microcrystalline growth regime was probed in situ by monitoring the etch product (SiH4) gas density during a short H-2 plasma treatment step. Etch product detection took place by the easy-to-implement techniques of optical emission spectroscopy and infrared absorption spectroscopy. The phase composition of the films was probed as a function of the SiH4 concentration during deposition and as a function of the film thickness. The in situ results were corroborated by Raman spectroscopy and solar cell analysis. (C) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 22 条
[1]   BOND SELECTIVITY IN SILICON FILM GROWTH [J].
BOLAND, JJ ;
PARSONS, GN .
SCIENCE, 1992, 256 (5061) :1304-1306
[2]   Evolution of microstructure and phase in amorphous, protocrystalline, and micro crystalline silicon studied by real time spectroscopic ellipsometry [J].
Collins, RW ;
Ferlauto, AS ;
Ferreira, GM ;
Chen, C ;
Koh, J ;
Koval, RJ ;
Lee, Y ;
Pearce, JM ;
Wronski, CR .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) :143-180
[3]   Plasma deposition of thin film silicon:: kinetics monitored by optical emission spectroscopy [J].
Feitknecht, L ;
Meier, J ;
Torres, P ;
Zürcher, J ;
Shah, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 74 (1-4) :539-545
[4]   Optical emission spectroscopy study toward high rate growth of microcrystalline silicon [J].
Fukuda, Y ;
Sakuma, Y ;
Fukai, C ;
Fujimura, Y ;
Azuma, K ;
Shirai, H .
THIN SOLID FILMS, 2001, 386 (02) :256-260
[5]   High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition [J].
Guo, LH ;
Kondo, M ;
Fukawa, M ;
Saitoh, K ;
Matsuda, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A) :L1116-L1118
[6]   Hydrogen-mediated structural changes of amorphous and microcrystalline silicon [J].
Kaiser, I ;
Nickel, NH ;
Fuhs, W ;
Pilz, W .
PHYSICAL REVIEW B, 1998, 58 (04) :R1718-R1721
[7]   Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance [J].
Klein, S ;
Finger, F ;
Carius, R ;
Stutzmann, M .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (02)
[8]   Growth mechanism of microcrystalline silicon at high pressure conditions [J].
Rath, JK ;
Franken, RHJ ;
Gordijn, A ;
Schropp, REI ;
Goedheer, WJ .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 :56-60
[9]   Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon [J].
Saitoh, K ;
Kondo, M ;
Fukawa, M ;
Nishimiya, T ;
Matsuda, A ;
Futako, W ;
Shimizu, I .
APPLIED PHYSICS LETTERS, 1997, 71 (23) :3403-3405
[10]   Photovoltaic technology: The case for thin-film solar cells [J].
Shah, A ;
Torres, P ;
Tscharner, R ;
Wyrsch, N ;
Keppner, H .
SCIENCE, 1999, 285 (5428) :692-698