Stable curves asymptotic to a degenerate fixed point

被引:21
作者
Fontich, E [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
invariant manifold; parabolic points;
D O I
10.1016/S0362-546X(98)00004-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:711 / 733
页数:23
相关论文
共 15 条
[1]  
Bogdanov R. I., 1975, FUNCTIONAL ANAL ITS, V9, P144, DOI DOI 10.1007/BF01075453
[2]   Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms [J].
Broer, H ;
Roussarie, R ;
Simo, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :1147-1172
[3]  
Broer H. W., 1993, EQUADIFF 91, P81
[4]   INVARIANT-MANIFOLDS FOR A CLASS OF PARABOLIC POINTS [J].
CASASAYAS, J ;
FONTICH, E ;
NUNES, A .
NONLINEARITY, 1992, 5 (05) :1193-1210
[5]  
CASASAYAS J, 1996, ADV SERIES NONLINEAR, V8, P61
[6]   Homoclinic orbits to parabolic points [J].
Casasayas, Josefina ;
Fontich, Ernest ;
Nunes, Ana .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (02) :201-216
[7]  
CRAIG S, 1996, ANISOTROPIC MANEV PR
[8]   THE EXISTENCE OF TRANSVERSE HOMOCLINIC POINTS IN THE SITNIKOV PROBLEM [J].
DANKOWICZ, H ;
HOLMES, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) :468-483
[9]   ANALYTIC INVARIANTS OF MAPPINGS OF 2 VARIABLES [J].
DIAMOND, PM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 27 (03) :601-&
[10]  
Gumowski I., 1980, Dynamique Chaotique