Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory

被引:183
作者
Dorfmueller, Jens [1 ]
Vogelgesang, Ralf [1 ]
Khunsin, Worawut [1 ]
Rockstuhl, Carsten [2 ]
Etrich, Christoph [3 ]
Kern, Klaus [1 ,4 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] Univ Jena, Inst Festkorpertheorie & Opt, D-07743 Jena, Germany
[3] Univ Jena, Inst Angew Phys, D-07743 Jena, Germany
[4] Ecole Polytech Fed Lausanne, Inst Phys Matiere Condensee, CH-1015 Lausanne, Switzerland
关键词
Optical antenna; antenna theory; plasmonics; near-field optics; scanning near-field optical microscopy; antenna directionality; RESONANCES; NANOANTENNAS; FREQUENCY; LIGHT;
D O I
10.1021/nl101921y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency (RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is' fully supported by apertureless scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point for the development of analytical models of more complex antenna structures.
引用
收藏
页码:3596 / 3603
页数:8
相关论文
共 47 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]  
Anger Pascal, 2006, Phys Rev Lett, V96, P113002
[3]   DISPERSION-RELATIONS FOR NON-RADIATIVE SURFACE PLASMONS ON CYLINDERS [J].
ASHLEY, JC ;
EMERSON, LC .
SURFACE SCIENCE, 1974, 41 (02) :615-618
[4]  
Bancroft R., 2009, MICROSTRIP PRINTED A, V2nd, DOI [DOI 10.1049/SBEW048E, 10.1049/SBEW048E]
[5]   Apertureless scanning near field optical microscope with sub-10 nm resolution [J].
Bek, A ;
Vogelgesang, R ;
Kern, K .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04)
[6]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[7]  
Bohren C.F, 2008, Absorption and Scattering of Light by Small Particles
[8]   A generalization of the reciprocal theorem [J].
Carson, John R. .
BELL SYSTEM TECHNICAL JOURNAL, 1924, 3 (03) :393-399
[9]   Fabry-Perot Resonances in One-Dimensional Plasmonic Nanostructures [J].
Dorfmueller, Jens ;
Vogelgesang, Ralf ;
Weitz, R. Thomas ;
Rockstuhl, Carsten ;
Etrich, Christoph ;
Pertsch, Thomas ;
Lederer, Falk ;
Kern, Klaus .
NANO LETTERS, 2009, 9 (06) :2372-2377
[10]   Plasmonic nanoantennas: Angular scattering properties of multipole resonances in noble metal nanorods [J].
Encina, Ezequiel R. ;
Coronado, Eduardo A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (26) :9586-9594