C elegans sequences that control trans-splicing and operon pre-mRNA processing

被引:29
作者
Graber, Joel H.
Salisbury, Jesse
Hutchins, Lucie N.
Blumenthal, Thomas
机构
[1] Jackson Lab, Bar Harbor, ME 04609 USA
[2] Univ Maine, Funct Genom Program, Orono, ME 04473 USA
关键词
trans-splicing; polyadenylation; bioinformatics; mRNA processing; C; elegans; NONNEGATIVE MATRIX FACTORIZATION; C-ELEGANS; DOWNSTREAM ELEMENTS; 3'-END FORMATION; CLEAVAGE SITE; END FORMATION; POLYADENYLATION; RECOGNITION; IDENTIFICATION; CONSERVATION;
D O I
10.1261/rna.596707
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many mRNAs in Caenorhabditis elegans are generated through a trans-splicing reaction that adds one of two classes of spliced leader RNA to an independently transcribed pre-mRNA. SL1 leaders are spliced mostly to pre-mRNAs from genes with outrons, intron-like sequences at the 5 '-ends of the pre-mRNAs. In contrast, SL2 leaders are nearly exclusively trans-spliced to genes that occur downstream in polycistronic pre-mRNAs produced from operons. Operon pre-mRNA processing requires separation into individual transcripts, which is accomplished by 3 '-processing of upstream genes and spliced leader trans-splicing to the downstream genes. We used a novel computational analysis, based on nonnegative matrix factorization, to identify and characterize significant differences in the cis-acting sequence elements that differentiate various types of functional site, including internal versus terminal 3 '-processing sites, and SL1 versus SL2 trans-splicing sites. We describe several key elements, including the U-rich (Ur) element that couples 3 '-processing with SL2 trans-splicing, and a novel outron (Ou) element that occurs upstream of SL1 trans-splicing sites. Finally, we present models of the distinct classes of trans-splicing reaction, including SL1 trans-splicing at the outron, SL2 trans-splicing in standard operons, competitive SL1-SL2 trans-splicing in operons with large intergenic separation, and SL1 trans-splicing in SL1-type operons, which have no intergenic separation.
引用
收藏
页码:1409 / 1426
页数:18
相关论文
共 53 条
[21]   AN ORDERED PATHWAY OF ASSEMBLY OF COMPONENTS REQUIRED FOR POLYADENYLATION SITE RECOGNITION AND PROCESSING [J].
GILMARTIN, GM ;
NEVINS, JR .
GENES & DEVELOPMENT, 1989, 3 (12B) :2180-2189
[22]   In silico detection of control signals:: mRNA 3′-end-processing sequences in diverse species [J].
Graber, JH ;
Cantor, CR ;
Mohr, SC ;
Smith, TF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :14055-14060
[23]   Genomic detection of new yeast pre-mRNA 3′-end-processing signals [J].
Graber, JH ;
Cantor, CR ;
Mohr, SC ;
Smith, TF .
NUCLEIC ACIDS RESEARCH, 1999, 27 (03) :888-894
[24]   Operon conservation and the evolution of trans-splicing in the phylum Nematoda [J].
Guiliano, David B. ;
Blaxter, Mark L. .
PLOS GENETICS, 2006, 2 (11) :1871-1882
[25]   A probabilistic model of 3′ end formation in Caenorhabditis elegans [J].
Hajarnavis, A ;
Korf, I ;
Durbin, R .
NUCLEIC ACIDS RESEARCH, 2004, 32 (11) :3392-3399
[26]   An unusual chemical reactivity of Sm site adenosines strongly correlates with proper assembly of core U snRNP particles [J].
Hartmuth, K ;
Raker, VA ;
Huber, J ;
Branlant, C ;
Lührmann, R .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) :133-147
[27]   U2AF binding selects for the high conservation of the C-elegans 3′ splice site [J].
Hollins, C ;
Zorio, DAR ;
MacMorris, M ;
Blumenthal, T .
RNA, 2005, 11 (03) :248-253
[28]   Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation [J].
Hu, J ;
Lutz, CS ;
Wilusz, J ;
Tian, B .
RNA, 2005, 11 (10) :1485-1493
[29]   Intercistronic region required for polycistronic Pre-mRNA processing in Caenorhabditis elegans [J].
Huang, T ;
Kuersten, S ;
Deshpande, AM ;
Spieth, J ;
MacMorris, M ;
Blumenthal, T .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (04) :1111-1120
[30]   Ensembl 2007 [J].
Hubbard, T. J. P. ;
Aken, B. L. ;
Beal, K. ;
Ballester, B. ;
Caccamo, M. ;
Chen, Y. ;
Clarke, L. ;
Coates, G. ;
Cunningham, F. ;
Cutts, T. ;
Down, T. ;
Dyer, S. C. ;
Fitzgerald, S. ;
Fernandez-Banet, J. ;
Graf, S. ;
Haider, S. ;
Hammond, M. ;
Herrero, J. ;
Holland, R. ;
Howe, K. ;
Howe, K. ;
Johnson, N. ;
Kahari, A. ;
Keefe, D. ;
Kokocinski, F. ;
Kulesha, E. ;
Lawson, D. ;
Longden, I. ;
Melsopp, C. ;
Megy, K. ;
Meidl, P. ;
Overduin, B. ;
Parker, A. ;
Prlic, A. ;
Rice, S. ;
Rios, D. ;
Schuster, M. ;
Sealy, I. ;
Severin, J. ;
Slater, G. ;
Smedley, D. ;
Spudich, G. ;
Trevanion, S. ;
Vilella, A. ;
Vogel, J. ;
White, S. ;
Wood, M. ;
Cox, T. ;
Curwen, V. ;
Durbin, R. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D610-D617