A one-parameter genetic algorithm for the minimum labeling spanning tree problem

被引:31
作者
Xiong, YP [1 ]
Golden, B
Wasil, E
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, RH Smith Sch Business, College Pk, MD 20742 USA
[3] American Univ, Kogod Sch Business, Washington, DC 20016 USA
关键词
genetic algorithm (GA); NP-hard; spanning trees;
D O I
10.1109/TEVC.2004.840145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a connected, undirected graph G whose edges are labeled (or colored), the minimum labeling spanning tree (MLST) problem seeks a spanning tree on G with the minimum number of distinct labels (or colors). In recent work, the MLST problem has been shown to be NP-hard and an effective heuristic [maximum vertex covering algorithm (MVCA)] has been proposed and analyzed. In this paper, we use a one-parameter genetic algorithm (GA) to solve the problem. In computational tests, the GA clearly outperforms MVCA.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 8 条
[1]   Local search for the minimum label spanning tree problem with bounded color classes [J].
Brüggemann, T ;
Monnot, J ;
Woeginger, GJ .
OPERATIONS RESEARCH LETTERS, 2003, 31 (03) :195-201
[2]   The minimum labeling spanning trees [J].
Chang, RS ;
Leu, SJ .
INFORMATION PROCESSING LETTERS, 1997, 63 (05) :277-282
[3]   Genetic algorithms for communications network design - An empirical study of the factors that influence performance [J].
Chou, HH ;
Premkumar, G ;
Chu, CH .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (03) :236-249
[4]  
GOLDEN B, 2004, IN PRESS INFORMS J C
[5]   On the minimum label spanning tree problem [J].
Krumke, SO ;
Wirth, HC .
INFORMATION PROCESSING LETTERS, 1998, 66 (02) :81-85
[6]   AN APPROACH TO A PROBLEM IN NETWORK DESIGN USING GENETIC ALGORITHMS [J].
PALMER, CC ;
KERSHENBAUM, A .
NETWORKS, 1995, 26 (03) :151-163
[7]   A note on the minimum label spanning tree [J].
Wan, YY ;
Chen, GL ;
Xu, YL .
INFORMATION PROCESSING LETTERS, 2002, 84 (02) :99-101
[8]   Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem [J].
Xiong, YP ;
Golden, B ;
Wasil, E .
OPERATIONS RESEARCH LETTERS, 2005, 33 (01) :77-80