Correlation and spectral properties of multidimensional Thue-Morse sequences

被引:6
作者
Barbe, A. [1 ]
Von Haeseler, F. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Heverlee, Belgium
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 04期
关键词
automatic sequences; substitution sequences; long-range aperiodic order; quasi-periodicity; disordered structures; Delone sets; correlation; spectral analysis; Fourier analysis; spectral measure; singular continuous spectrum; quasi-crystals; diffraction; diffuse scattering; crystallography; binary number systems;
D O I
10.1142/S0218127407017793
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers higher-dimensional generalizations of the classical one-dimensional two-automatic Thue-Morse sequence on N. This is done by taking the same automaton-structure as in the one-dimensional case, but using binary number systems in Z(m) instead of in N. It is shown that the corresponding +/-1-valued Thue-Morse sequences are either periodic or have a singular continuous spectrum, dependent on the binary number system. Specific results are given for dimensions up to six, with extensive illustrations for the one-, two- and three-dimensional case.
引用
收藏
页码:1265 / 1303
页数:39
相关论文
共 33 条
[1]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[2]  
ALLOUCHE JP, 1995, QUASICRISTALS
[3]   Diffraction of random tilings:: Some rigorous results [J].
Baake, M ;
Höffe, M .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) :219-261
[4]  
Baake M., 2000, Directions in Mathematical Quasicrystals
[5]   Binary number systems for Zk [J].
Barbé, A ;
von Haeseler, F .
JOURNAL OF NUMBER THEORY, 2006, 117 (01) :14-30
[6]   Automatic sets and Delone sets [J].
Barbé, A ;
von Haeseler, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13) :4017-4038
[7]   Correlation functions of higher-dimensional automatic sequences [J].
Barbé, A ;
von Haeseler, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (45) :10879-10898
[8]   Correlation and spectral properties of higher-dimensional paperfolding and Rudin-Shapiro sequences [J].
Barbé, A ;
von Haeseler, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12) :2599-2622
[9]  
BARBE A, 2004, THEORET COMPUT SCI, V359, P255
[10]  
Barnsley MF., 1988, Fractals Everywhere