On posterior consistency in nonparametric regression problems

被引:71
作者
Choi, Taeryon [1 ]
Schervish, Mark J.
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 20742 USA
[2] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
关键词
almost sure consistency; differentiable functions; empirical probability measure; hellinger metric; in probability metric; sieve;
D O I
10.1016/j.jmva.2007.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1969 / 1987
页数:19
相关论文
共 18 条
[1]   Posterior consistency for semi-parametric regression problems [J].
Amewou-Atisso, M ;
Ghosal, S ;
Ghosh, JK ;
Ramamoorthi, RV .
BERNOULLI, 2003, 9 (02) :291-312
[2]  
Barron A, 1999, ANN STAT, V27, P536
[3]  
Choi T, 2005, THESIS CARNEGIE MELL
[4]  
CHOI T, 2007, IN PRESS J STAT PLAN
[5]   Bayesian estimation of the spectral density of a time series [J].
Choudhuri, N ;
Ghosal, S ;
Roy, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) :1050-1059
[6]  
Ghosal S, 1999, ANN STAT, V27, P143
[7]  
GHOSAL S, 2007, IN PRESS ANN STAT, V35
[8]   Posterior consistency of Gaussian process prior for nonparametric binary regression [J].
Ghosal, Subhashis ;
Roy, Anindya .
ANNALS OF STATISTICS, 2006, 34 (05) :2413-2429
[9]  
GRENANDER U, 1981, ABSTR INF
[10]   Convergence rates for posterior distributions and adaptive estimation [J].
Huang, TM .
ANNALS OF STATISTICS, 2004, 32 (04) :1556-1593