Correlation between field electron emission and structural properties in randomly and vertically oriented carbon nanotube films

被引:15
作者
Ikuno, T
Honda, S
Furuta, H
Aoki, K
Hirao, T
Oura, K
Katayama, M
机构
[1] Osaka Univ, Grad Sch Engn, Dept Elect Engn, Suita, Osaka 5650871, Japan
[2] Rodel Nitta Co, Yamato Koriyama, Nara 6391032, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2005年 / 44卷 / 4A期
关键词
carbon nanotube; randomly and vertically oriented carbon nanotube; structural property; field electron emission; field enhancement factor;
D O I
10.1143/JJAP.44.1655
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigated the influence of the structural properties of randomly oriented carbon nanotube (R-CNT) and vertically oriented carbon nanotube (V-CNT) films on their field electron emission properties. The R-CNT and V-CNT films were synthesized using FeNi catalysts by means of thermal and dual-RF plasma-enhanced chemical vapor depositions, respectively. The structural properties of the R-CNT and V-CNT films were dependent on the initial thickness of the FeNi catalyst. As the FeNi film thickness decreased, the diameters of both types of CNTs decreased. Although the field electron emission property of the V-CNT film was improved with increasing the aspect ratio of V-CNT, the field enhancement factor, beta, obtained from the Fowler-Nordheim plot was found to be 100 times larger than that obtained from the geometric properties. R-CNTs exhibited a lower threshold field than V-CNTs. These results suggest that the field emission property is markedly influenced by the surface state rather than by the geometric factors of CNTs.
引用
收藏
页码:1655 / 1660
页数:6
相关论文
共 25 条
[1]   Field emission of individual carbon nanotubes in the scanning electron microscope [J].
Bonard, JM ;
Dean, KA ;
Coll, BF ;
Klinke, C .
PHYSICAL REVIEW LETTERS, 2002, 89 (19) :1-197602
[2]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[3]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[4]   Field emission from short and stubby vertically aligned carbon nanotubes [J].
Chhowalla, M ;
Ducati, C ;
Rupesinghe, NL ;
Teo, KBK ;
Amaratunga, GAJ .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2079-2081
[5]   Electrophoresis deposition of carbon nanotubes for triode-type field emission display [J].
Choi, WB ;
Jin, YW ;
Kim, HY ;
Lee, SJ ;
Yun, MJ ;
Kang, JH ;
Choi, YS ;
Park, NS ;
Lee, NS ;
Kim, JM .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1547-1549
[6]   Field emission from 4.5 in. single-walled and multiwalled carbon nanotube films [J].
Chung, DS ;
Choi, WB ;
Kang, JH ;
Kim, HY ;
Han, IT ;
Park, YS ;
Lee, YH ;
Lee, NS ;
Jung, JE ;
Kim, JM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (02) :1054-1058
[7]  
Dresselhaus MS, 2001, CARBON NANOTUBES SYN
[8]   Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters [J].
Edgcombe, CJ ;
Valdrè, U .
JOURNAL OF MICROSCOPY, 2001, 203 (02) :188-194
[9]   Electron emission in intense electric fields [J].
Fowler, RH ;
Nordheim, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1928, 119 (781) :173-181
[10]   Work function at the tips of multiwalled carbon nanotubes [J].
Gao, RP ;
Pan, ZW ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2001, 78 (12) :1757-1759