Multifractal detrended fluctuation analysis of derivative and spot markets

被引:69
作者
Lim, Gyuchang
Kim, SooYong
Lee, Hyoung
Kim, Kyungsik [1 ]
Lee, Dong-In
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[2] Daejon Univ, Dept Informat & Commun Engn, Taejon 300716, South Korea
[3] Pukyong Natl Univ, Dept Phys, Pusan 608737, South Korea
[4] Pukyong Natl Univ, Dept Environm Atmospher Sci, Pusan 608737, South Korea
关键词
multifractal detrended fluctuation analysis; generalized dimension; Renyi exponent; KTB; USB;
D O I
10.1016/j.physa.2007.07.055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the multifractal properties of price increments in the cases of derivative and spot markets. Through the multifractal detrended fluctuation analysis, we estimate the generalized Hurst and the Renyi exponents for price fluctuations. By deriving the singularity spectrum from the above exponents, we quantify the multifractality of a financial time series and compare the multifractal properties of two different markets. The different behavior of each agent-group in transactions is also discussed. In order to identify the nature of the underlying multifractality, we apply the method of surrogate data to both sets of financial data. It is shown that multifractality due to a fat-tailed distribution is significant. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 15 条
[1]   Behavioral-independence features of complex heartbeat dynamics [J].
Amaral, LAN ;
Ivanov, PC ;
Aoyagi, N ;
Hidaka, I ;
Tomono, S ;
Goldberger, AL ;
Stanley, HE ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2001, 86 (26) :6026-6029
[2]  
Beck C., 1993, THERMODYNAMICS CHAOT
[3]   Self-averaging phenomenon and multiscaling in Hong Kong stock market [J].
Bershadskii, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 317 (3-4) :591-596
[4]   DIMENSIONS AND ENTROPIES OF STRANGE ATTRACTORS FROM A FLUCTUATING DYNAMICS APPROACH [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1984, 13 (1-2) :34-54
[5]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[6]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[7]   MULTISCALING IN MULTIFRACTALS [J].
JENSEN, MH ;
PALADIN, G ;
VULPIANI, A .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :208-211
[8]   Multifractal detrended fluctuation analysis of nonstationary time series [J].
Kantelhardt, JW ;
Zschiegner, SA ;
Koscielny-Bunde, E ;
Havlin, S ;
Bunde, A ;
Stanley, HE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 316 (1-4) :87-114
[9]   Multifractal properties of price fluctuations of stock and commodities [J].
Matia, K ;
Ashkenazy, Y ;
Stanley, HE .
EUROPHYSICS LETTERS, 2003, 61 (03) :422-428
[10]   MULTIFRACTAL FORMALISM FOR FRACTAL SIGNALS - THE STRUCTURE-FUNCTION APPROACH VERSUS THE WAVELET-TRANSFORM MODULUS-MAXIMA METHOD [J].
MUZY, JF ;
BACRY, E ;
ARNEODO, A .
PHYSICAL REVIEW E, 1993, 47 (02) :875-884