Formulating Spatially Varying Performance in the Statistical Fusion Framework

被引:83
作者
Asman, Andrew J. [1 ]
Landman, Bennett A. [1 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn, Nashville, TN 37235 USA
关键词
Multi-atlas segmentation; rater models; simultaneous truth and performance level estimation (STAPLE); spatial STAPLE; statistical fusion; MR-IMAGES; SEGMENTATION; BRAIN; MODEL; REGISTRATION; COMBINATION; ALGORITHM;
D O I
10.1109/TMI.2012.2190992
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To date, label fusion methods have primarily relied either on global [e. g., simultaneous truth and performance level estimation (STAPLE), globally weighted vote] or voxelwise (e. g., locally weighted vote) performance models. Optimality of the statistical fusion framework hinges upon the validity of the stochastic model of how a rater errs (i.e., the labeling process model). Hitherto, approaches have tended to focus on the extremes of potential models. Herein, we propose an extension to the STAPLE approach to seamlessly account for spatially varying performance by extending the performance level parameters to account for a smooth, voxelwise performance level field that is unique to each rater. This approach, Spatial STAPLE, provides significant improvements over state-of-the-art label fusion algorithms in both simulated and empirical data sets.
引用
收藏
页码:1326 / 1336
页数:11
相关论文
共 34 条
[1]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[2]   Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI [J].
Ashton, EA ;
Takahashi, C ;
Berg, MJ ;
Goodman, A ;
Totterman, S ;
Ekholm, S .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2003, 17 (03) :300-308
[3]  
Asman A., 2011, P SOC PHOTO-OPT INS, V7962, p79623G
[4]  
Asman AJ, 2011, LECT NOTES COMPUT SC, V6801, P85, DOI 10.1007/978-3-642-22092-0_8
[5]   Robust Statistical Label Fusion Through Consensus Level, Labeler Accuracy, and Truth Estimation (COLLATE) [J].
Asman, Andrew J. ;
Landman, Bennett A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (10) :1779-1794
[6]  
Chen A., 2011, Phys. Med. Biol, V57, P11
[7]  
Commowick O, 2010, LECT NOTES COMPUT SC, V6363, P25
[8]   Human frontal cortex: An MRI-based parcellation method [J].
Crespo-Facorro, B ;
Kim, JJ ;
Andreasen, NC ;
O'Leary, DS ;
Wiser, AK ;
Bailey, JM ;
Harris, G ;
Magnotta, VA .
NEUROIMAGE, 1999, 10 (05) :500-519
[9]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[10]  
Fiez JA, 2000, HUM BRAIN MAPP, V9, P192, DOI 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO