Solution-processed transparent electrodes

被引:92
作者
Hecht, David S. [1 ]
Kaner, Richard B. [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA USA
关键词
GRAPHENE; CARBON; FILMS; EXFOLIATION; FABRICATION;
D O I
10.1557/mrs.2011.211
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Typically, materials with high electrical conductivity such as metals are opaque, and materials with high optical transparency such as glass are insulating. Finding materials that are both transparent to visible light and electrically conductive has proven to be a challenge. The need for such materials continues to grow, as many of today's popular devices such as liquid-crystal displays and organic light-emitting diodes in televisions, touch screens in phones or tablet computers, electrophoretic displays in e-readers, or solar cells on a roof require one or more layers to transmit visible light, while simultaneously applying a voltage or conducting a current. Today, the industry's need for such a material is serviced by various metal oxides, of which indium tin oxide (ITO) is by far the most common. The opto-electronic properties of ITO satisfy industry need for most devices; however, ITO has several drawbacks (e.g., brittle, expensive, and typically applied via costly sputtering techniques). To address these issues, recent advances in solution-processed nanomaterials have enabled several printable alternatives to sputtered ITO. These nanomaterials include conducting polymers, metallic nanostructures, ITO nanostructures, carbon nanotubes, and graphene. The ability to apply nanomaterials from the liquid phase opens the possibility to print these electronic materials roll-to-roll, greatly reducing cost and increasing yield and throughput, while the nanomaterial topology enables truly flexible devices.
引用
收藏
页码:749 / 755
页数:7
相关论文
共 55 条
[41]   Fine structure constant defines visual transparency of graphene [J].
Nair, R. R. ;
Blake, P. ;
Grigorenko, A. N. ;
Novoselov, K. S. ;
Booth, T. J. ;
Stauber, T. ;
Peres, N. M. R. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5881) :1308-1308
[42]  
NanoMarkets, 2011, NANOMARKETS TRANSPAR, V2011
[43]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[44]  
Sierros K.A., 2010, Thin Solid Films, V518, p6977._
[45]   Graphene-based composite materials [J].
Stankovich, Sasha ;
Dikin, Dmitriy A. ;
Dommett, Geoffrey H. B. ;
Kohlhaas, Kevin M. ;
Zimney, Eric J. ;
Stach, Eric A. ;
Piner, Richard D. ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2006, 442 (7100) :282-286
[46]   Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors [J].
Tung, Vincent C. ;
Chen, Li-Min ;
Allen, Matthew J. ;
Wassei, Jonathan K. ;
Nelson, Kurt ;
Kaner, Richard B. ;
Yang, Yang .
NANO LETTERS, 2009, 9 (05) :1949-1955
[47]   High-performance transparent conducting oxide nanowires [J].
Wan, Qing ;
Dattoli, Eric N. ;
Fung, Wayne Y. ;
Guo, Wei ;
Chen, Yanbin ;
Pan, Xiaoqing ;
Lu, Wei .
NANO LETTERS, 2006, 6 (12) :2909-2915
[48]   Transparent carbon films as electrodes in organic solar cells [J].
Wang, Xuan ;
Zhi, Linjie ;
Tsao, Nok ;
Tomovic, Zeljko ;
Li, Jiaoli ;
Muellen, Klaus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2990-2992
[49]   Transparent, conductive graphene electrodes for dye-sensitized solar cells [J].
Wang, Xuan ;
Zhi, Linjie ;
Muellen, Klaus .
NANO LETTERS, 2008, 8 (01) :323-327
[50]   Graphene, a promising transparent conductor [J].
Wassei, Jonathan K. ;
Kaner, Richard B. .
MATERIALS TODAY, 2010, 13 (03) :52-59