Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp

被引:189
作者
Bunting, KA [1 ]
Roe, SM [1 ]
Pearl, LH [1 ]
机构
[1] Inst Canc Res, Chester Beatty Labs, Sect Struct Biol, London SW3 6JB, England
关键词
beta-clamp processivity factor; DNA polymerase IV; Y-family;
D O I
10.1093/emboj/cdg568
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Y-family DNA polymerases can extend primer strands across template strand lesions that stall replicative polymerases. The poor processivity and fidelity of these enzymes, key to their biological role, requires that their access to the primer-template junction is both facilitated and regulated in order to minimize mutations. These features are believed to be provided by interaction with processivity factors, beta-clamp or proliferating cell nuclear antigen (PCNA), which are also essential for the function of replicative DNA polymerases. The basis for this interaction is revealed by the crystal structure of the complex between the 'little finger' domain of the Y-family DNA polymerase Pol IV and the beta-clamp processivity factor, both from Escherichia coli. The main interaction involves a C-terminal peptide of Pol IV, and is similar to interactions seen between isolated peptides and other processivity factors. However, this first structure of an entire domain of a binding partner with an assembled clamp reveals a substantial secondary interface, which maintains the polymerase in an inactive orientation, and may regulate the switch between replicative and Y-family DNA polymerases in response to a template strand lesion.
引用
收藏
页码:5883 / 5892
页数:10
相关论文
共 57 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass [J].
Boudsocq, F ;
Ling, H ;
Yang, W ;
Woodgate, R .
DNA REPAIR, 2002, 1 (05) :343-358
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Replication of damaged DNA: molecular defect in Xeroderma pigmentosum variant cells [J].
Cordonnier, AM ;
Fuchs, RPP .
MUTATION RESEARCH-DNA REPAIR, 1999, 435 (02) :111-119
[5]   A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems [J].
Dalrymple, BP ;
Kongsuwan, K ;
Wijffels, G ;
Dixon, NE ;
Jennings, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11627-11632
[6]   Interaction of the β sliding clamp with MutS, ligase, and DNA polymerase I [J].
de Saro, FJL ;
O'Donnell, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8376-8380
[7]   Molecular biology - Specialized DNA polymerases, cellular survival, and the genesis of mutations [J].
Friedberg, EC ;
Wagner, R ;
Radman, M .
SCIENCE, 2002, 296 (5573) :1627-1630
[8]   Error-prone DNA polymerases: Novel structures and the benefits of infidelity [J].
Friedberg, EC ;
Fischhaber, PL ;
Kisker, C .
CELL, 2001, 107 (01) :9-12
[9]   Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily [J].
Gerlach, VL ;
Aravind, L ;
Gotway, G ;
Schultz, RA ;
Koonin, EV ;
Friedberg, EC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (21) :11922-11927
[10]   The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light [J].
Gibbs, PEM ;
Wang, XD ;
Li, ZQ ;
McManus, TP ;
McGregor, WG ;
Lawrence, CW ;
Maher, VM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (08) :4186-4191