Bacterial resistance to antibiotics: Modified target sites

被引:213
作者
Lambert, PA [1 ]
机构
[1] Aston Univ, Birmingham B4 7ET, W Midlands, England
关键词
bacterial resistance; antibiotics; modified targets; resistance genes; genetic exchange;
D O I
10.1016/j.addr.2005.04.003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Alteration in the target sites of antibiotics is a common mechanism of resistance. Examples of clinical strains showing resistance can be found for every class of antibiotic, regardless of the mechanism of action. Target site changes often result from spontaneous mutation of a bacterial gene on the chromosome and selection in the presence of the antibiotic. Examples include mutations in RNA polymerase and DNA gyrase, resulting in resistance to the rifamycins and quinolones, respectively. In other cases, acquisition of resistance may involve transfer of resistance genes from other organisms by some form of genetic exchange (conjugation, transduction, or transformation). Examples of these mechanisms include acquisition of the mecA genes encoding methicillin resistance in Staphylococcus aureus and the various van genes in enterococci encoding resistance to glycopeptides. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1471 / 1485
页数:15
相关论文
共 149 条
[11]   Antipneumococcal activity of DK-507k, a new quinolone, compared with the activities of 10 other agents [J].
Browne, FA ;
Bozdogan, B ;
Clark, C ;
Kelly, LM ;
Ednie, L ;
Kosowska, K ;
Dewasse, B ;
Jacobs, MR ;
Appelbaum, PC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (12) :3815-3824
[12]   MOLECULAR-BASIS FOR VANCOMYCIN RESISTANCE IN ENTEROCOCCUS-FAECIUM BM4147 - BIOSYNTHESIS OF A DEPSIPEPTIDE PEPTIDOGLYCAN PRECURSOR BY VANCOMYCIN RESISTANCE PROTEINS VANH AND VANA [J].
BUGG, TDH ;
WRIGHT, GD ;
DUTKAMALEN, S ;
ARTHUR, M ;
COURVALIN, P ;
WALSH, CT .
BIOCHEMISTRY, 1991, 30 (43) :10408-10415
[13]   Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae [J].
Canu, A ;
Malbruny, B ;
Coquemont, M ;
Davies, TA ;
Appelbaum, PC ;
Leclercq, R .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (01) :125-131
[14]   Emergence of the trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293 [J].
Charpentier, E ;
Courvalin, P .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (05) :1134-1136
[15]   PENICILLIN-BINDING PROTEINS IN STREPTOCOCCUS-FAECALIS AND STREPTOCOCCUS-FAECIUM [J].
CHEN, HY ;
WILLIAMS, JD .
JOURNAL OF MEDICAL MICROBIOLOGY, 1987, 23 (02) :141-147
[16]   Exploiting current understanding of antibiotic action for discovery of new drugs [J].
Chopra, I ;
Hesse, L ;
O'Neill, AJ .
JOURNAL OF APPLIED MICROBIOLOGY, 2002, 92 :4S-15S
[17]   Antibacterial activities and characterization of novel inhibitors of LpxC [J].
Clements, JM ;
Coignard, F ;
Johnson, I ;
Chandler, S ;
Palan, S ;
Waller, A ;
Wijkmans, J ;
Hunter, MG .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (06) :1793-1799
[18]   Genetics and molecular biology of beta-lactam-resistant pneumococci [J].
Coffey, TJ ;
Dowson, CG ;
Daniels, M ;
Spratt, BG .
MICROBIAL DRUG RESISTANCE, 1995, 1 (01) :29-34
[19]   Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City [J].
Cooksey, RC ;
Morlock, GP ;
McQueen, A ;
Glickman, SE ;
Crawford, JT .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1996, 40 (05) :1186-1188
[20]   The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice [J].
Cookson, BD .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1998, 41 (01) :11-18