A 220-mm2, four- and eight-bank, 256-Mb SDRAM with single-sided stitched WL architecture

被引:4
作者
Kirihata, T [1 ]
Gall, M [1 ]
Hosokawa, K [1 ]
Dortu, JM [1 ]
Wong, H [1 ]
Pfefferl, P [1 ]
Ji, BL [1 ]
Weinfurtner, O [1 ]
DeBrosse, JK [1 ]
Terletzki, H [1 ]
Selz, M [1 ]
Ellis, W [1 ]
Wordeman, MR [1 ]
Kiehl, O [1 ]
机构
[1] IBM Corp, Semicond Res & Dev Ctr, Siemens, Toshiba, Hopewell Junction, NY 12533 USA
关键词
asymmetric block activation; divided column redundancy; DRAM; flexible test mode; frequency doubling test mode; intraunit address increment; memory; SDRAM; selectable redundancy; single-ended RWD; stitched WL architecture; trench cell; 256-Mb DRAM; 256-Mb SDRAM;
D O I
10.1109/4.726565
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 220-mm(2), 256-Mb SDRAM has been fabricated in fully planarized 0.22-mu m CMOS technology with buried strap trench cell. The single-sided stitched word-line (WL) architecture employs asymmetric block activation and shared row decoders to realize 86.7% cell/chip-length efficiency (57.3% cell/chip efficiency). A staggered WL driver arrangement makes it possible to build the drivers on a 0.484-mu m WL pitch in limited space. An intraunit address increment pipeline scheme hating two logical 8-Mb arrays within one physical 16-Mb unit results in a burst frequency up to 200 MHz for single data rate, while allowing four- and eight-bank organizations. A data rate of 270 Mbits/s was confirmed with a 135-MHz frequency doubling test mode. Single-ended addresses and a single-ended read-write-drive bus reduce the ICG current to similar to 90 mA for 100-MHz seamless burst operation. A detailed shmoo analysis demonstrates address-access time of 13.5 ns and clock-access time of 5 ns, This design also uses a selectable row domain and divided column redundancy scheme that repairs up to similar to 1400 faults/chip with only 8% chip overhead.
引用
收藏
页码:1711 / 1719
页数:9
相关论文
共 31 条
[1]  
BRONNER G, S 1995 VLSI TECHN, P15
[2]  
ETO S, 1998 IEEE ISSCC, P82
[3]   A 45-NS 16-MBIT DRAM WITH TRIPLE-WELL STRUCTURE [J].
FUJII, S ;
OGIHARA, M ;
SHIMIZU, M ;
YOSHIDA, M ;
NUMATA, K ;
HARA, T ;
WATANABE, S ;
SAWADA, S ;
MIZUNO, T ;
KUMAGAI, J ;
YOSHIKAWA, S ;
KAKI, S ;
SAITO, Y ;
AOCHI, H ;
HAMAMOTO, T ;
TOITA, K .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1989, 24 (05) :1170-1175
[4]  
GALBI D, 1992, ESSCIRC, P131
[5]  
GRIFFIN M, 1998 IEEE ISSCC, P156
[6]  
HAN JM, S 1996 VLSI CIRC, P192
[7]  
HASEGAWA M, 1998 IEEE ISSCC, P80
[8]  
KAGA T, 1994, INTERNATIONAL ELECTRON DEVICES MEETING 1994 - IEDM TECHNICAL DIGEST, P927, DOI 10.1109/IEDM.1994.383261
[9]   A 50-NS 16-MB DRAM WITH A 10-NS DATA RATE AND ON-CHIP ECC [J].
KALTER, HL ;
STAPPER, CH ;
BARTH, JE ;
DILORENZO, J ;
DRAKE, CE ;
FIFIELD, JA ;
KELLEY, GA ;
LEWIS, SC ;
VANDERHOEVEN, WB ;
YANKOSKY, JA .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1990, 25 (05) :1118-1128
[10]  
KIM C, 1998 IEEE ISSCC, P158