Electronic transport properties of individual chemically reduced graphene oxide sheets

被引:2067
作者
Gomez-Navarro, Cristina
Weitz, R. Thomas
Bittner, Alexander M.
Scolari, Matteo
Mews, Alf
Burghard, Marko
Kern, Klaus
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] Univ Siegen, Dept Chem, D-57068 Siegen, Germany
[3] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1021/nl072090c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Individual graphene oxide sheets subjected to chemical reduction were electrically characterized as a function of temperature and external electric fields. The fully reduced monolayers exhibited conductivities ranging between 0.05 and 2 S/cm and field effect mobilities of 2-200 cm(2)/Vs at room temperature. Temperature-dependent electrical measurements and Raman spectroscopic investigations suggest that charge transport occurs via variable range hopping between intact graphene islands with sizes on the order of several nanometers. Furthermore, the comparative study of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.
引用
收藏
页码:3499 / 3503
页数:5
相关论文
共 29 条
  • [1] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [2] Preparation and characterization of graphene oxide paper
    Dikin, Dmitriy A.
    Stankovich, Sasha
    Zimney, Eric J.
    Piner, Richard D.
    Dommett, Geoffrey H. B.
    Evmenenko, Guennadi
    Nguyen, SonBinh T.
    Ruoff, Rodney S.
    [J]. NATURE, 2007, 448 (7152) : 457 - 460
  • [3] Interpretation of Raman spectra of disordered and amorphous carbon
    Ferrari, AC
    Robertson, J
    [J]. PHYSICAL REVIEW B, 2000, 61 (20) : 14095 - 14107
  • [4] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [5] A new structural model for graphite oxide
    He, HY
    Klinowski, J
    Forster, M
    Lerf, A
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 287 (1-2) : 53 - 56
  • [6] WSXM:: A software for scanning probe microscopy and a tool for nanotechnology
    Horcas, I.
    Fernandez, R.
    Gomez-Rodriguez, J. M.
    Colchero, J.
    Gomez-Herrero, J.
    Baro, A. M.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
  • [7] PREPARATION OF GRAPHITIC OXIDE
    HUMMERS, WS
    OFFEMAN, RE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) : 1339 - 1339
  • [8] Field-effect transistor made of individual V2O5 nanofibers
    Kim, GT
    Muster, J
    Krstic, V
    Park, JG
    Park, YW
    Roth, S
    Burghard, M
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (14) : 1875 - 1877
  • [9] A graphene field-effect device
    Lemme, Max C.
    Echtermeyer, Tim J.
    Baus, Matthias
    Kurz, Heinrich
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (04) : 282 - 284
  • [10] Structure of graphite oxide revisited
    Lerf, A
    He, HY
    Forster, M
    Klinowski, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (23) : 4477 - 4482