Natural neighbor coordinates of points on a surface

被引:38
作者
Boissonnat, JD [1 ]
Cazals, F [1 ]
机构
[1] INRIA, F-06902 Sophia Antipolis, France
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2001年 / 19卷 / 2-3期
关键词
computational geometry; Voronoi diagrams; medial axis; natural neighbor interpolation; surface reconstruction;
D O I
10.1016/S0925-7721(01)00018-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Natural neighbor coordinates and natural neighbor interpolation have been introduced by Sibson for interpolating multivariate scattered data. In this paper, we consider the case where the data points belong to a smooth surface S, i.e., a (d - 1)-manifold of R-d. We show that the natural neighbor coordinates of a point X belonging to S tends to behave as a local system of coordinates on the surface when the density of points increases. Our result does not assume any knowledge about the ordering, connectivity or topology of the data points or of the surface. An important ingredient in our proof is the fact that a subset of the vertices of the Voronoi diagram of the data points converges towards the medial axis of S when the sampling density increases. (C) 2001 Elsevier Science B.V All rights reserved.
引用
收藏
页码:155 / 173
页数:19
相关论文
共 19 条
[1]   The crust and the β-skeleton:: Combinatorial curve reconstruction [J].
Amenta, N ;
Bern, M ;
Eppstein, D .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (02) :125-135
[2]   Surface reconstruction by Voronoi filtering [J].
Amenta, N ;
Bern, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (04) :481-504
[3]  
Amenta N., 2000, SCG '00, P119, DOI 10.1145/336154.336193
[4]   R-regular shape reconstruction from unorganized points [J].
Attali, D .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (04) :239-247
[5]  
AURENHAMMER F, 1988, GEOMETRIAE DEDICATA, V28, P45
[6]  
Boissonnat J.-D., 2000, P 16 ANN S COMP GEOM, P223
[7]   CONTINUOUS SKELETON COMPUTATION BY VORONOI DIAGRAM [J].
BRANDT, JW ;
ALGAZI, VR .
CVGIP-IMAGE UNDERSTANDING, 1992, 55 (03) :329-338
[8]   Systems of coordinates associated with points scattered in the plane [J].
Brown, JL .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (06) :547-559
[9]  
Chew L.P., 1993, P 9 ANN S COMP GEOM, P274
[10]   Triangulating topological spaces [J].
Edelsbrunner, H ;
Shah, NR .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (04) :365-378