Pyrolysis, crystallization, and sintering of mesostructured titania thin films assessed by in situ thermal ellipsometry

被引:85
作者
Bass, John D.
Grosso, David
Boissiere, Cedric
Sanchez, Clement
机构
[1] Univ Paris 06, Lab Chim Matiere Condensee Paris, F-75252 Paris 05, France
[2] CNRS, F-75252 Paris, France
关键词
D O I
10.1021/ja078140x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In-situ thermal ellipsometric analysis is used to elucidate new and fine-scale details on the thermally driven densification, pyrolysis, crystallization, and sintering of dense and ordered mesoporous titania thin films prepared by evaporation-induced self-assembly. The role of the heating schedule, initial film thickness, nature of the substrate and templating agent, solution aging, and presence of water and other additives in the calcination environment is examined. Each of these parameters is shown to have unique and often substantial effects on the final film structure, while the technique itself provides detailed insight into the chemical origin and evolution of these effects. In-situ monitoring and control over the governing chemical processes, such as high-temperature adsorption phenomena that impact nanocrystal growth, is also demonstrated. The evolution of both the porosity and chemical processes occurring inside these materials are evaluated, including extraction of kinetic parameters for the pyrolysis of the template and crystallization of the matrix walls. The latter is shown to be strongly dependent on the presence of mesoscale ordering with ordered cubic films indicating a 1D diffusion-limited crystallization process and dense films following a 3D diffusion-limited process. Less well-ordered mesoporous films, despite similarities in pore volume and pore size distributions, are kinetically more reminiscent of dense films in terms of crystallization. In-situ thermal ellipsometry, by detailing the evolution of the thermally driven chemistry and ceramization that dictate the final film properties, provides immensely important insight into the synthesis and optimization of advanced functional materials based on titania and other metal oxide thin films.
引用
收藏
页码:7882 / 7897
页数:16
相关论文
共 62 条
[1]   Mesoporous anatase TiO2 films:: Use of TiK XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior [J].
Angelome, Paula C. ;
Andrini, Leandro ;
Calvo, Mauricio E. ;
Requejo, Felix Gregorio ;
Bilmes, Sara A. ;
Soler-Illia, Galo J. A. A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (29) :10886-10893
[2]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[3]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[4]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI 10.1063/1.1750631
[5]   Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films [J].
Baeck, SH ;
Choi, KS ;
Jaramillo, TF ;
Stucky, GD ;
McFarland, EW .
ADVANCED MATERIALS, 2003, 15 (15) :1269-+
[6]  
BASS JD, J BIOMED MAT R UNPUB
[7]   Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions [J].
Bass, John D. ;
Grosso, David ;
Boissiere, Cedric ;
Belamie, Emmanuel ;
Coradin, Thibaud ;
Sanchez, Clement .
CHEMISTRY OF MATERIALS, 2007, 19 (17) :4349-4356
[8]   Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry [J].
Boissiere, C ;
Grosso, D ;
Lepoutre, S ;
Nicole, L ;
Bruneau, AB ;
Sanchez, C .
LANGMUIR, 2005, 21 (26) :12362-12371
[9]   Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation [J].
Bosc, F ;
Edwards, D ;
Keller, N ;
Keller, V ;
Ayral, A .
THIN SOLID FILMS, 2006, 495 (1-2) :272-279
[10]   SOL-]GEL-]GLASS .2. PHYSICAL AND STRUCTURAL EVOLUTION DURING CONSTANT HEATING RATE EXPERIMENTS [J].
BRINKER, CJ ;
SCHERER, GW ;
ROTH, EP .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1985, 72 (2-3) :345-368