Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder

被引:129
作者
Vlassiouk, Ivan [1 ]
Smirnov, Sergei [2 ]
Ivanov, Ilia [3 ]
Fulvio, Pasquale F. [4 ]
Dai, Sheng [4 ]
Meyer, Harry [5 ]
Chi, Miaofang [5 ]
Hensley, Dale [3 ]
Datskos, Panos [1 ]
Lavrik, Nickolay V. [3 ]
机构
[1] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37931 USA
[2] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
关键词
RAMAN; GRAPHITE; FILMS;
D O I
10.1088/0957-4484/22/27/275716
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, I-G/I-D. We relate this ratio to the characteristic domain size, L-a, and investigate the electrical and thermal conductivity of graphene as a function of L-a. The electrical resistivity, rho, measured on graphene samples transferred onto SiO2/Si substrates shows linear correlation with L-a(-1). The thermal conductivity, K, measured on the same graphene samples suspended on silicon pillars, on the other hand, appears to have a much weaker dependence on L-a, close to K similar to L-a(1/3). It results in an apparent rho similar to K-3 correlation between them. Despite the progressively increasing structural disorder in graphene grown at lower temperatures, it shows remarkably high thermal conductivity (10(2)-10(3) W K-1 m(-1)) and low electrical (10(3)-3 x 10(5) Omega) resistivities suitable for various applications.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Electron and Optical Phonon Temperatures in Electrically Biased Graphene [J].
Berciaud, Stephane ;
Han, Melinda Y. ;
Mak, Kin Fai ;
Brus, Louis E. ;
Kim, Philip ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[5]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[6]   Phonon anharmonicities in graphite and graphene [J].
Bonini, Nicola ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[7]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[8]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[9]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[10]   Hot Phonons in an Electrically Biased Graphene Constriction [J].
Chae, Dong-Hun ;
Krauss, Benjamin ;
von Klitzing, Klaus ;
Smet, Jurgen H. .
NANO LETTERS, 2010, 10 (02) :466-471