Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans

被引:692
作者
Tullet, Jennifer M. A. [1 ]
Hertweck, Maren [2 ]
An, Jae Hyung [1 ,3 ]
Baker, Joseph [1 ]
Hwang, Ji Yun [3 ]
Liu, Shu [2 ]
Oliveira, Riva P. [1 ]
Baumeister, Ralf [2 ,4 ]
Blackwell, T. Keith [1 ]
机构
[1] Harvard Univ, Sch Med, Harvard Stem Cell Inst,Dept Pathol, Joslin Diabet Ctr,Sect Dev & Stem Cell Biol, Boston, MA 02215 USA
[2] Univ Freiburg, ZBMZ, Ctr Biochem & Mol Cell Res, Fac Med,Bioinformat & Mol Genet Fac Biol, D-79104 Freiburg, Germany
[3] Yonsei Univ, Prot Network Res Ctr, Seoul 120749, South Korea
[4] Univ Freiburg, Ctr Syst Biol ZBSA, D-79104 Freiburg, Germany
关键词
D O I
10.1016/j.cell.2008.01.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin/IGF-1-like signaling (IIS) is central to growth and metabolism and has a conserved role in aging. In C. elegans, reductions in IIS increase stress resistance and longevity, effects that require the IIS-inhibited FOXO protein DAF-16. The C. elegans transcription factor SKN-1 also defends against oxidative stress by mobilizing the conserved phase 2 detoxification response. Here we show that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel. The IIS kinases AKT-1, -2, and SGK-1 phosphorylate SKN-1, and reduced IIS leads to constitutive SKN-1 nuclear accumulation in the intestine and SKN-1 target gene activation. SKN-1 contributes to the increased stress tolerance and longevity resulting from reduced IIS and delays aging when expressed transgenically. Furthermore, SKN-1 that is constitutively active increases life span independently of DAF-16. Our findings indicate that the transcription network regulated by SKN-1 promotes longevity and is an important direct target of IIS.
引用
收藏
页码:1025 / 1038
页数:14
相关论文
共 42 条
[1]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[2]   SKN-1 links C-elegans mesendodermal specification to a conserved oxidative stress response [J].
An, JH ;
Blackwell, TK .
GENES & DEVELOPMENT, 2003, 17 (15) :1882-1893
[3]   Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3 [J].
An, JH ;
Vranas, K ;
Lucke, M ;
Inoue, H ;
Hisamoto, N ;
Matsumoto, K ;
Blackwell, TK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (45) :16275-16280
[4]   Genetics of aging in Caenorhabditis elegans [J].
Antebi, Adam .
PLOS GENETICS, 2007, 3 (09) :1565-1571
[5]   Regulation of life-span by germ-line stem cells in Caenorhabditis elegans [J].
Arantes-Oliveira, N ;
Apfeld, J ;
Dillin, A ;
Kenyon, C .
SCIENCE, 2002, 295 (5554) :502-505
[6]   C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span [J].
Berdichevsky, Ala ;
Viswanathan, Mohan ;
Horvitz, H. Robert ;
Guarente, Leonard .
CELL, 2006, 125 (06) :1165-1177
[7]   Two neurons mediate diet-restriction-induced longevity in C-elegans [J].
Bishop, Nicholas A. ;
Guarente, Leonard .
NATURE, 2007, 447 (7144) :545-+
[8]   SKN-1, A MATERNALLY EXPRESSED GENE REQUIRED TO SPECIFY THE FATE OF VENTRAL BLASTOMERES IN THE EARLY C-ELEGANS EMBRYO [J].
BOWERMAN, B ;
EATON, BA ;
PRIESS, JR .
CELL, 1992, 68 (06) :1061-1075
[9]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965
[10]   Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways [J].
Cahill, CM ;
Tzivion, G ;
Nasrin, N ;
Ogg, S ;
Dore, J ;
Ruvkun, G ;
Alexander-Bridges, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :13402-13410