Self-organization of MTOCs replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes

被引:429
作者
Schuh, Melina [1 ]
Ellenberg, Jan [1 ]
机构
[1] European Mol Biol Lab, Gene Express Unit, D-69117 Heidelberg, Germany
关键词
D O I
10.1016/j.cell.2007.06.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromosome segregation in mammalian oocytes is driven by a microtubule spindle lacking centrosomes. Here, we analyze centrosome-independent spindle assembly by quantitative high-resolution confocal imaging in live maturing mouse oocytes. We show that spindle assembly proceeds by the self-organization of over 80 microtubule organizing centers (MTOCs) that form de novo from a cytoplasmic microtubule network in prophase and that functionally replace centrosomes. Initially distributed throughout the ooplasm, MTOCs congress at the center of the oocyte, where they contribute to a massive, Ran-dependent increase of the number of microtubules after nuclear envelope breakdown and to the individualization of clustered chromosomes. Through progressive MTOC clustering and activation of kinesin-5, the multipolar MTOC aggregate self- organizes into a bipolar intermediate, which then elongates and thereby establishes chromosome biorientation. Finally, a stable barrel-shaped acentrosomal metaphase spindle with oscillating chromosomes and astral-like microtubules forms that surprisingly exhibits key properties of a centrosomal spindle.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 62 条
[21]   Mitotic spindle morphogenesis: Ran on the microtubule cytoskeleton and beyond [J].
Goodman, B. ;
Zheng, Y. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 :716-721
[22]  
GUETHHALLONET C, 1993, J CELL SCI, V105, P157
[23]   KINETOCHORES CAPTURE ASTRAL MICROTUBULES DURING CHROMOSOME ATTACHMENT TO THE MITOTIC SPINDLE - DIRECT VISUALIZATION IN LIVE NEWT LUNG-CELLS [J].
HAYDEN, JH ;
BOWSER, SS ;
RIEDER, CL .
JOURNAL OF CELL BIOLOGY, 1990, 111 (03) :1039-1045
[24]   Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts [J].
Heald, R ;
Tournebize, R ;
Blank, T ;
Sandaltzopoulos, R ;
Becker, P ;
Hyman, A ;
Karsenti, E .
NATURE, 1996, 382 (6590) :420-425
[25]  
Jaffe LA, 2004, METHOD CELL BIOL, V74, P219
[26]   Analysis of a RanGTP-regulated gradient in mitotic somatic cells [J].
Kaláb, P ;
Pralle, A ;
Isacoff, EY ;
Heald, R ;
Weis, K .
NATURE, 2006, 440 (7084) :697-701
[27]   Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells [J].
Kanda, T ;
Sullivan, KF ;
Wahl, GM .
CURRENT BIOLOGY, 1998, 8 (07) :377-385
[28]   The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks [J].
Kapitein, LC ;
Peterman, EJG ;
Kwok, BH ;
Kim, JH ;
Kapoor, TM ;
Schmidt, CF .
NATURE, 2005, 435 (7038) :114-118
[29]   The mitotic spindle and actin tails [J].
Karsenti, E ;
Nédélec, F .
BIOLOGY OF THE CELL, 2004, 96 (03) :237-240
[30]   INTERACTION OF THE NUCLEAR GTP-BINDING PROTEIN RAN WITH ITS REGULATORY PROTEINS RCC1 AND RANGAP1 [J].
KLEBE, C ;
BISCHOFF, FR ;
PONSTINGL, H ;
WITTINGHOFER, A .
BIOCHEMISTRY, 1995, 34 (02) :639-647