Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum)

被引:117
作者
Frazier, Taylor P. [1 ]
Xie, Fuliang [1 ]
Freistaedter, Andrew [1 ]
Burklew, Caitlin E. [1 ]
Zhang, Baohong [1 ]
机构
[1] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA
关键词
Antisense; Comparative genomics; Gene cluster; Genome survey sequence; Homolog; MicroRNA; Nicotiana; Target; Tobacco; COMPUTATIONAL IDENTIFICATION; CONSERVED MICRORNAS; PLANT MICRORNA; ARABIDOPSIS; BIOGENESIS; PRECURSORS; EXPRESSION; PREDICTION; TIME; RNAS;
D O I
10.1007/s00425-010-1255-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
microRNAs (miRNAs) are a recently discovered class of small (similar to 21 nt) endogenous gene regulators that have been shown to play an important role in plant growth and development by aiding in organ maturation, hormone signaling, tissue differentiation, and plant tolerance to environmental stress. Since a list of miRNAs has never been generated for tobacco, we employed genome survey sequence analysis to computationally identify 259 potentially conserved tobacco miRNAs, belonging to 65 families, and validated 11 of these miRNAs using qRT-PCR. The 65 miRNA families were dramatically different in size. miRNA precursor (pre-miRNA) sequence analysis showed that tobacco pre-miRNAs greatly varied from 45 to 635 nt in length with an average of 141 +/- A 108 nt. We were also able to determine the presence of antisense miRNAs as well as miRNA clusters in tobacco. Using previously established protocols, a total of 1,225 potential target genes were predicted for the newly identified tobacco miRNAs. These target genes include transcription factors, DNA replication proteins, metabolic enzymes, as well as other gene targets necessary for proper plant maturation. The results of this study show that conserved miRNAs exist in tobacco and suggest that these miRNAs may play an important role in tobacco growth and development.
引用
收藏
页码:1289 / 1308
页数:20
相关论文
共 56 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass [J].
Andrianov, Vyacheslav ;
Borisjuk, Nikolai ;
Pogrebnyak, Natalia ;
Brinker, Anita ;
Dixon, Joseph ;
Spitsin, Sergei ;
Flynn, John ;
Matyszczuk, Paulina ;
Andryszak, Karolina ;
Laurelli, Marilyn ;
Golovkin, Maxim ;
Koprowski, Hilary .
PLANT BIOTECHNOLOGY JOURNAL, 2010, 8 (03) :277-287
[4]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]  
Benson DA, 2013, NUCLEIC ACIDS RES, V41, pD36, DOI [10.1093/nar/gkn723, 10.1093/nar/gkp1024, 10.1093/nar/gkw1070, 10.1093/nar/gkr1202, 10.1093/nar/gkx1094, 10.1093/nar/gkl986, 10.1093/nar/gkq1079, 10.1093/nar/gks1195, 10.1093/nar/gkg057]
[7]   Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
BIOINFORMATICS, 2004, 20 (17) :2911-2917
[8]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[9]   Real-time quantification of microRNAs by stem-loop RT-PCR [J].
Chen, CF ;
Ridzon, DA ;
Broomer, AJ ;
Zhou, ZH ;
Lee, DH ;
Nguyen, JT ;
Barbisin, M ;
Xu, NL ;
Mahuvakar, VR ;
Andersen, MR ;
Lao, KQ ;
Livak, KJ ;
Guegler, KJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e179.1-e179.9
[10]   Genomic analysis of rice microRNA promoters and clusters [J].
Cui, Xiao ;
Xu, Si Min ;
Mu, Dao Shuai ;
Yang, Zhi Min .
GENE, 2009, 431 (1-2) :61-66