Ergodic properties of microcanonical observables

被引:27
作者
Giardina, C [1 ]
Livi, R
机构
[1] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] Univ Florence, Ist Nazl Fis Nucl, Dipartimento Fis, I-50125 Florence, Italy
[4] INFM, Unita Firenze, I-40126 Bologna, Italy
关键词
strong stochasticity threshold; ergodic hypothesis; microcanonical ensemble;
D O I
10.1023/A:1023036101468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of the existence of a strong stochasticity threshold in the FPU-beta model is reconsidered, using suitable microcanonical observables of thermodynamic nature, like the temperature and the specific heat. Explicit expressions for these observables are obtained by exploiting rigorous methods of differential geometry. Measurements of the corresponding temporal autocorrelation functions locate the threshold at a finite value of the energy density, which is independent of the number of degrees of freedom.
引用
收藏
页码:1027 / 1045
页数:19
相关论文
共 25 条
[1]   THERMODYNAMIC LIMIT BEYOND THE STOCHASTICITY THRESHOLD IN NONLINEAR CHAINS [J].
ALABISO, C ;
CASARTELLI, M ;
MARENZONI, P .
PHYSICS LETTERS A, 1993, 183 (04) :305-310
[2]   ORDERED AND STOCHASTIC-BEHAVIOR IN A TWO-DIMENSIONAL LENNARD-JONES SYSTEM [J].
BENETTIN, G ;
TENENBAUM, A .
PHYSICAL REVIEW A, 1983, 28 (05) :3020-3029
[3]   ANHARMONIC CHAIN WITH LENNARD-JONES INTERACTION [J].
BOCCHIERI, P ;
SCOTTI, A ;
BEARZI, B ;
LOINGER, A .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (05) :2013-+
[4]  
CASARTELLI M, 1976, THEOR MATH PHYS, V29, P205
[5]   RELAXATION-TIMES IN AN ANHARMONIC CRYSTAL WITH DILUTED IMPURITIES [J].
CASETTI, L ;
LIVI, R ;
MACCHI, A ;
PETTINI, M .
EUROPHYSICS LETTERS, 1995, 32 (07) :549-554
[6]   ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY [J].
CASETTI, L ;
PETTINI, M .
PHYSICAL REVIEW E, 1993, 48 (06) :4320-4332
[7]   EFFICIENT SYMPLECTIC ALGORITHMS FOR NUMERICAL SIMULATIONS OF HAMILTONIAN FLOWS [J].
CASETTI, L .
PHYSICA SCRIPTA, 1995, 51 (01) :29-34
[8]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[9]   Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems [J].
CerrutiSola, M ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 53 (01) :179-188
[10]   NUMERICAL EXPERIMENTS ON STATISTICAL BEHAVIOR OF DYNAMICAL-SYSTEMS WITH A FEW DEGREES OF FREEDOM [J].
CHIRIKOV, BV ;
IZRAILEV, FM ;
TAYURSKY, VA .
COMPUTER PHYSICS COMMUNICATIONS, 1973, 5 (01) :11-16