ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy

被引:99
作者
Chan, YF
Duan, XF
Chan, SK
Sou, IK
Zhang, XX
Wang, N [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Inst Nano Sci & Technol, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1063/1.1615293
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report molecular-beam epitaxy growth of single crystalline ZnSe nanowires with uniform diameters (similar to10 nm) on GaP(111) substrates. The growth process was based on the Au-catalyzed vapor-liquid-solid deposition. As determined by electron microdiffraction and high-resolution transmission electron microscopy, ZnSe nanowires grew generally along the <110> and <112> directions with the orientation relationship of (111)(ZnSe wire)//(111)(GaP) and <1 (1) over bar0>(ZnSe wire)//<1 (1) over bar0>(GaP). The dominant defects were found to be twins at the interface between the substrate and the nanowires along the (111) plane. (C) 2003 American Institute of Physics.
引用
收藏
页码:2665 / 2667
页数:3
相关论文
共 16 条
[1]   One-dimensional heterostructures in semiconductor nanowhiskers [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :1058-1060
[2]   Direct observation of stacking fault tetrahedra in ZnSe/GaAs(001) pseudomorphic epilayers by weak beam dark-field transmission electron microscopy [J].
Fung, KK ;
Wang, N ;
Sou, IK .
APPLIED PHYSICS LETTERS, 1997, 71 (09) :1225-1227
[3]   FUNDAMENTAL ASPECTS OF VLS GROWTH [J].
GIVARGIZOV, EI .
JOURNAL OF CRYSTAL GROWTH, 1975, 31 (DEC) :20-30
[4]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[5]   ROLE OF STACKING-FAULTS AS MISFIT DISLOCATION SOURCES AND NONRADIATIVE RECOMBINATION CENTERS IN II-VI HETEROSTRUCTURES AND DEVICES [J].
GUHA, S ;
DEPUYDT, JM ;
QIU, J ;
HOFLER, GE ;
HAASE, MA ;
WU, BJ ;
CHENG, H .
APPLIED PHYSICS LETTERS, 1993, 63 (22) :3023-3025
[6]   Formation of Si nanowire by atomic manipulation with a high temperature scanning tunneling microscope [J].
Hasunuma, R ;
Komeda, T ;
Mukaida, H ;
Tokumoto, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (04) :1437-1441
[7]   Control of thickness and orientation of solution-grown silicon nanowires [J].
Holmes, JD ;
Johnston, KP ;
Doty, RC ;
Korgel, BA .
SCIENCE, 2000, 287 (5457) :1471-1473
[8]   MICROSTRUCTURE STUDY OF A DEGRADED PSEUDOMORPHIC SEPARATE-CONFINEMENT HETEROSTRUCTURE BLUE-GREEN LASER-DIODE [J].
HUA, GC ;
OTSUKA, N ;
GRILLO, DC ;
FAN, Y ;
HAN, J ;
RINGLE, MD ;
GUNSHOR, RL ;
HOVINEN, M ;
NURMIKKO, AV .
APPLIED PHYSICS LETTERS, 1994, 65 (11) :1331-1333
[9]   OXIDATION OF SUB-50 NM SI COLUMNS FOR LIGHT-EMISSION STUDY [J].
LIU, HI ;
MALUF, NI ;
PEASE, RFW ;
BIEGELSEN, DK ;
JOHNSON, NM ;
PONCE, FA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1992, 10 (06) :2846-2850
[10]   A laser ablation method for the synthesis of crystalline semiconductor nanowires [J].
Morales, AM ;
Lieber, CM .
SCIENCE, 1998, 279 (5348) :208-211