Blood-on-a-chip

被引:534
作者
Toner, M [1 ]
Irimia, D
机构
[1] Massachusetts Gen Hosp, Shriners Hosp Children, Ctr Engn Med & Surg Sci, BioMEMS Resource Ctr, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Boston, MA 02114 USA
关键词
lab-on-a-chip; point-of-care diagnostic; cell separation; sample preparation; microfluidic;
D O I
10.1146/annurev.bioeng.7.011205.135108
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate, fast, and affordable analysis of the cellular component of blood is of prime interest for medicine and research. Yet, most often sample preparation procedures for blood analysis involve handling steps prone to introducing artifacts, whereas analysis methods commonly require skilled technicians and well-equipped, expensive laboratories. Developing more gentle protocols and affordable instruments for specific blood analysis tasks is becoming possible through the recent progress in the area of microfluidics and lab-on-a-chip-type devices. Precise control over the cell microenvironment during separation procedures and the ability to scale down the analysis to very small volumes of blood are among the most attractive capabilities of the new approaches. Here we review some of the emerging principles for manipulating blood cells at microscale and promising high-throughput approaches to blood cell separation using microdevices. Examples of specific single-purpose devices are described together with integration strategies for blood cell separation and analysis modules.
引用
收藏
页码:77 / 103
页数:31
相关论文
共 127 条
[1]   Disposable Smart lab on a chip for point-of-care clinical diagnostics [J].
Ahn, CH ;
Choi, JW ;
Beaucage, G ;
Nevin, JH ;
Lee, JB ;
Puntambekar, A ;
Lee, JY .
PROCEEDINGS OF THE IEEE, 2004, 92 (01) :154-173
[2]   Microfluidic devices for cellomics: a review [J].
Andersson, H ;
van den Berg, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 92 (03) :315-325
[3]   Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars [J].
Applegate, RW ;
Squier, J ;
Vestad, T ;
Oakey, J ;
Marr, DWM .
OPTICS EXPRESS, 2004, 12 (19) :4390-4398
[4]   Miniaturised nucleic acid analysis [J].
Auroux, PA ;
Koc, Y ;
deMello, A ;
Manz, A ;
Day, PJR .
LAB ON A CHIP, 2004, 4 (06) :534-546
[5]   Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns [J].
Barron, JA ;
Wu, P ;
Ladouceur, HD ;
Ringeisen, BR .
BIOMEDICAL MICRODEVICES, 2004, 6 (02) :139-147
[6]   Advances in cell separation: recent developments in counterflow centrifugal elutriation and continuous flow cell separation [J].
Bauer, J .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 1999, 722 (1-2) :55-69
[7]   SEPARATION OF HUMAN BREAST-CANCER CELLS FROM BLOOD BY DIFFERENTIAL DIELECTRIC AFFINITY [J].
BECKER, FF ;
WANG, XB ;
HUANG, Y ;
PETHIG, R ;
VYKOUKAL, J ;
GASCOYNE, PRC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :860-864
[8]   Identification of repertoires of surface antigens on leukemias using an antibody microarray [J].
Belov, L ;
Huang, P ;
Barber, N ;
Mulligan, SP ;
Christopherson, RI .
PROTEOMICS, 2003, 3 (11) :2147-2154
[9]  
Berger M, 2001, ELECTROPHORESIS, V22, P3883, DOI 10.1002/1522-2683(200110)22:18<3883::AID-ELPS3883>3.0.CO
[10]  
2-4