Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

被引:38
作者
Boriskina, Svetlana V. [1 ,2 ]
Reinhard, Bjoern M. [1 ]
机构
[1] Boston Univ, Dept Chem, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
来源
OPTICS EXPRESS | 2011年 / 19卷 / 22期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
FANO RESONANCES; METAL NANOPARTICLES; SINGULAR OPTICS; SILICON CHIP; NEAR-FIELD; LIGHT; PLASMONICS; SCATTERING; MOLECULES; MODES;
D O I
10.1364/OE.19.022305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strategy of re-configuring plasmonic nanocircuits via locally-addressable photonic elements opens the way to develop chip-integrated optoplasmonic switching architectures, which is crucial for implementation of quantum information nanocircuits. (C)2011 Optical Society of America
引用
收藏
页码:22305 / 22315
页数:11
相关论文
共 62 条
[11]   Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam [J].
Chu, Ming-Wen ;
Myroshnychenko, Viktor ;
Chen, Cheng Hsuan ;
Deng, Jing-Pei ;
Mou, Chung-Yuan ;
Javier Garcia de Abajo, F. .
NANO LETTERS, 2009, 9 (01) :399-404
[12]   Optical vortices during a superresolution process in a metamaterial [J].
D'Aguanno, G. ;
Mattiucci, N. ;
Bloemer, M. ;
Desyatnikov, A. .
PHYSICAL REVIEW A, 2008, 77 (04)
[13]   A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules [J].
De Angelis, Francesco ;
Patrini, Maddalena ;
Das, Gobind ;
Maksymov, Ivan ;
Galli, Matteo ;
Businaro, Luca ;
Andreani, Lucio Claudio ;
Di Fabrizio, Enzo .
NANO LETTERS, 2008, 8 (08) :2321-2327
[14]   Singular Optics: Optical Vortices and Polarization Singularities [J].
Dennis, Mark R. ;
O'Holleran, Kevin ;
Padgett, Miles J. .
PROGRESS IN OPTICS, VOL 53, 2009, 53 :293-363
[15]   Compact Metallo-Dielectric Optical Antenna for Ultra Directional and Enhanced Radiative Emission [J].
Devilez, Alexis ;
Stout, Brian ;
Bonod, Nicolas .
ACS NANO, 2010, 4 (06) :3390-3396
[16]   Microdisk tunable resonant filters and switches [J].
Djordjev, K ;
Choi, SJ ;
Choi, SJ ;
Dapkus, PD .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (06) :828-830
[17]   Design and simulation of silicon microring optical routing switches [J].
Emelett, SJ ;
Soref, R .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (04) :1800-1807
[18]   Nanofluidic tuning of photonic crystal circuits [J].
Erickson, D ;
Rockwood, T ;
Emery, T ;
Scherer, A ;
Psaltis, D .
OPTICS LETTERS, 2006, 31 (01) :59-61
[19]   Self-Assembled Plasmonic Nanoparticle Clusters [J].
Fan, Jonathan A. ;
Wu, Chihhui ;
Bao, Kui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Nordlander, Peter ;
Shvets, Gennady ;
Capasso, Federico .
SCIENCE, 2010, 328 (5982) :1135-1138
[20]  
Gjonaj B, 2011, NAT PHOTONICS, V5, P360, DOI [10.1038/nphoton.2011.57, 10.1038/NPHOTON.2011.57]