Monogenic Autoimmunity

被引:64
作者
Cheng, Mickie H. [1 ]
Anderson, Mark S. [1 ]
机构
[1] Univ Calif San Francisco, Dept Med, Div Endocrinol & Metab, Ctr Diabet, San Francisco, CA 94143 USA
来源
ANNUAL REVIEW OF IMMUNOLOGY, VOL 30 | 2012年 / 30卷
关键词
immune tolerance; complement; interferon; apoptosis; Treg; thymus; REGULATORY T-CELLS; SYSTEMIC-LUPUS-ERYTHEMATOSUS; CANDIDIASIS-ECTODERMAL DYSTROPHY; AICARDI-GOUTIERES-SYNDROME; X-LINKED SYNDROME; SYNDROME TYPE-I; BONE-MARROW-TRANSPLANTATION; CHRONIC MUCOCUTANEOUS CANDIDIASIS; AIRE-DEFICIENT MICE; FAS GENE-MUTATIONS;
D O I
10.1146/annurev-immunol-020711-074953
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Monogenic autoimmune syndromes provide a rare yet powerful glimpse into the fundamental mechanisms of immunologic tolerance. Such syndromes reveal not only the contribution of an individual breakpoint in tolerance but also patterns in the pathogenesis of autoimmunity. Disturbances in innate immunity, a system built for ubiquitous sensing of danger signals, tend to generate systemic autoimmunity. For example, defects in the clearance of self-antigens and chronic stimulation of type 1 interferons lead to the systemic autoimmunity seen in C1q deficiency, SPENCDI, and AGS. In contrast, disturbances of adaptive immunity, which is built for antigen specificity, tend to produce organ-specific autoimmunity. Thus, the loss of lymphocyte homeostasis, whether through defects in apoptosis, suppression, or negative selection, leads to organ- specific autoimmunity in ALPS, IPEX, and APS1. We discuss the unique mechanisms of disease in these prominent syndromes as well as how they contribute to the spectrum of organ- specific or systemic autoimmunity. The continued study of rare variants in autoimmune disease will inform future investigations and treatments directed at rare and common autoimmune diseases alike.
引用
收藏
页码:393 / 427
页数:35
相关论文
共 242 条
[91]  
Hayman AR, 1996, DEVELOPMENT, V122, P3151
[92]   AUTOIMMUNE DIABETES AS A CONSEQUENCE OF LOCALLY PRODUCED INTERLEUKIN-2 [J].
HEATH, WR ;
ALLISON, J ;
HOFFMANN, MW ;
SCHONRICH, G ;
HAMMERLING, G ;
ARNOLD, B ;
MILLER, JFAP .
NATURE, 1992, 359 (6395) :547-549
[93]   Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla [J].
Heino, M ;
Peterson, P ;
Kudoh, J ;
Nagamine, K ;
Lagerstedt, A ;
Ovod, V ;
Ranki, A ;
Rantala, I ;
Nieminen, M ;
Tuukkanen, J ;
Scott, HS ;
Antonarakis, SE ;
Shimizu, N ;
Krohn, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (03) :821-825
[94]  
Heino M, 2000, EUR J IMMUNOL, V30, P1884, DOI 10.1002/1521-4141(200007)30:7<1884::AID-IMMU1884>3.0.CO
[95]  
2-P
[96]   Autoimmune lymphoproliferative syndrome with somatic Fas mutations [J].
Holzelova, E ;
Vonarbourg, C ;
Stolzenberg, MC ;
Arkwright, PD ;
Selz, F ;
Prieur, AM ;
Blanche, S ;
Bartunkova, J ;
Vilmer, E ;
Fischer, A ;
Le Deist, F ;
Rieux-Laucat, F .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (14) :1409-1418
[97]   Control of regulatory T cell development by the transcription factor Foxp3 [J].
Hori, S ;
Nomura, T ;
Sakaguchi, S .
SCIENCE, 2003, 299 (5609) :1057-1061
[98]   Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT [J].
Hu, Hui ;
Djuretic, Ivana ;
Sundrud, Mark S. ;
Rao, Anjana .
TRENDS IN IMMUNOLOGY, 2007, 28 (08) :329-332
[99]   Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I [J].
Husebye, E. S. ;
Perheentupa, J. ;
Rautemaa, R. ;
Kampe, O. .
JOURNAL OF INTERNAL MEDICINE, 2009, 265 (05) :514-529
[100]   Foxp3 inhibits RORγt-mediated IL-17A mRNA transcription through direct interaction with RORγt [J].
Ichiyama, Kenji ;
Yoshida, Hideyuki ;
Wakabayashi, Yu ;
Chinen, Takatoshi ;
Saeki, Kazuko ;
Nakaya, Mako ;
Takaesu, Giichi ;
Hori, Shohei ;
Yoshimura, Akihiko ;
Kobayashi, Takashi .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (25) :17003-17008