Dynamical screening of the van der Waals interaction between graphene layers

被引:11
作者
Dappe, Y. J. [1 ,2 ]
Bolcatto, P. G. [3 ,4 ]
Ortega, J. [5 ]
Flores, F. [5 ]
机构
[1] CEA Saclay, DSM IRAMIS SPEC, URA CNRS 2464, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] CEA, IRAMIS, SPCSI, F-91191 Gif Sur Yvette, France
[3] Univ Nacl Litoral, Fac Ingn Quim, Dept Fis, RA-3000 Santa Fe, Argentina
[4] Univ Nacl Litoral, Fac Humanidades & Ciencias, RA-3000 Santa Fe, Argentina
[5] Univ Autonoma Madrid, Dept Fis Teor Materia Condensada, E-28049 Madrid, Spain
关键词
DENSITY-FUNCTIONAL THEORY; AB-INITIO; BINDING; SYSTEMS; SIMULATIONS; MODEL;
D O I
10.1088/0953-8984/24/42/424208
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 +/- 5 meV/atom in reasonable agreement with the experimental evidence.
引用
收藏
页数:9
相关论文
共 61 条
[31]   Further developments in the local-orbital density-functional-theory tight-binding method [J].
Lewis, JP ;
Glaesemann, KR ;
Voth, GA ;
Fritsch, J ;
Demkov, AA ;
Ortega, J ;
Sankey, OF .
PHYSICAL REVIEW B, 2001, 64 (19)
[32]  
Lifshitz E., 1981, Physical Kinetics, V10
[33]   On the Theory and Systematic of Molecular Forces [J].
London, F. .
ZEITSCHRIFT FUR PHYSIK, 1930, 63 (3-4) :245-279
[34]   Slip diffusion and Levy flights of an adsorbed gold nanocluster [J].
Luedtke, WD ;
Landman, U .
PHYSICAL REVIEW LETTERS, 1999, 82 (19) :3835-3838
[35]  
Lukes V, 1999, INT J QUANTUM CHEM, V75, P81, DOI 10.1002/(SICI)1097-461X(1999)75:2<81::AID-QUA2>3.0.CO
[36]  
2-3
[37]  
Marques M A L, 2006, SPRINGER LECT NOTES, V706, P443
[38]   Structure and Energetics of Azobenzene on Ag(111): Benchmarking Semiempirical Dispersion Correction Approaches [J].
Mercurio, G. ;
McNellis, E. R. ;
Martin, I. ;
Hagen, S. ;
Leyssner, F. ;
Soubatch, S. ;
Meyer, J. ;
Wolf, M. ;
Tegeder, P. ;
Tautz, F. S. ;
Reuter, K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[39]   Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations [J].
Misquitta, AJ ;
Podeszwa, R ;
Jeziorski, B ;
Szalewicz, K .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (21)
[40]   Graphene on Ni(111): Strong interaction and weak adsorption [J].
Mittendorfer, F. ;
Garhofer, A. ;
Redinger, J. ;
Klimes, J. ;
Harl, J. ;
Kresse, G. .
PHYSICAL REVIEW B, 2011, 84 (20)