Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays

被引:126
作者
Eres, G
Kinkhabwala, AA
Cui, HT
Geohegan, DB
Puretzky, AA
Lowndes, DH
机构
[1] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
D O I
10.1021/jp051531i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main obstacle to widespread application of single-wall carbon nanotubes is the lack of reproducible synthesis methods of pure material. We describe a new growth method for single-wall carbon nanotubes that uses molecular beams of precursor gases that impinge on a heated substrate coated with a catalyst thin film. In this growth environment the gas and the substrate temperature are decoupled and carbon nanotube growth occurs by surface reactions without contribution from homogeneous gas-phase reactions. This controlled reaction environment revealed that SWCNT growth is a complex multicomponent reaction in which not just C, but also H, and O play a critical role. These experiments identified acetylene as a prolific direct building block for carbon network formation that is an order of magnitude more efficient than other small-molecule precursors. The molecular jet experiments show that with optimal catalyst particle size the incidence rate of acetylene molecules plays a critical role in the formation of single-wall carbon nanotubes and dense vertically aligned arrays in which they are the dominant component. The threshold for vertically aligned growth, the growth rate, the diameter, and the number of walls of the carbon nanotubes are systematically correlated with the acetylene incidence rate and the substrate temperature.
引用
收藏
页码:16684 / 16694
页数:11
相关论文
共 47 条
[1]  
Baker R.T.K., 1978, CHEM PHYS CARBON, V14, P83
[2]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[3]   Diameter-selective resonant Raman scattering in double-wall carbon nanotubes [J].
Bandow, S ;
Chen, G ;
Sumanasekera, GU ;
Gupta, R ;
Yudasaka, M ;
Iijima, S ;
Eklund, PC .
PHYSICAL REVIEW B, 2002, 66 (07) :754161-754168
[4]   Morphologies of diamond films from atomic-scale simulations of chemical vapor deposition [J].
Battaile, CC ;
Srolovitz, DJ ;
Butler, JE .
DIAMOND AND RELATED MATERIALS, 1997, 6 (09) :1198-1206
[5]   Chemistry and kinetics of chemical vapor deposition of pyrocarbon - II - Pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime [J].
Becker, A ;
Huttinger, KJ .
CARBON, 1998, 36 (03) :177-199
[6]   INTERACTION OF CARBON-MONOXIDE WITH FE(001) [J].
BROOKES, NB ;
CLARKE, A ;
JOHNSON, PD .
PHYSICAL REVIEW LETTERS, 1989, 63 (25) :2764-2767
[7]   Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition [J].
Cui, H ;
Eres, G ;
Howe, JY ;
Puretkzy, A ;
Varela, M ;
Geohegan, DB ;
Lowndes, DH .
CHEMICAL PHYSICS LETTERS, 2003, 374 (3-4) :222-228
[8]  
Dai HJ, 2001, TOP APPL PHYS, V80, P29
[9]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[10]   The influence of catalyst chemical state and morphology on carbon nanotube growth [J].
de los Arcos, T ;
Garnier, MG ;
Seo, JW ;
Oelhafen, P ;
Thommen, V ;
Mathys, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (23) :7728-7734