Chemistry and biology of DNA repair

被引:313
作者
Schärer, OD [1 ]
机构
[1] Univ Zurich, Inst Mol Canc Res, CH-8008 Zurich, Switzerland
关键词
cancer; DNA damage; DNA repair enzyme catalysis; molecular recognition;
D O I
10.1002/anie.200200523
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Numerous agents of endogenous and exogenous origin damage DNA in our genome. There are several DNA-repair pathways that recognize lesions in DNA and remove them through a number of diverse reaction sequences. Defects in DNA-repair proteins are associated with several human hereditary syndromes, which show a marked predisposition to cancer. Although DNA repair is essential for a healthy cell, DNA-repair enzymes counteract the efficiency of a number of important antitumor agents that exert their cytotoxic effects by damaging DNA. DNA-repair enzymes are therefore also targets for drug design. DNA-repair processes differ greatly in their nature and complexity. Whereas some pathways only require a single enzyme to restore the original DNA sequence, others operate through the coordinated action of 30 or more proteins. Our understanding of the genetic, biochemical, and structural basis of DNA repair and related processes has increased dramatically over the past decade. This review summarizes the latest developments in this field.
引用
收藏
页码:2946 / 2974
页数:29
相关论文
共 390 条
[61]   RETRACTED: Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G (Retracted Article. See vol 308, pg 1740, 2005) [J].
Cooper, PK ;
Nouspikel, T ;
Clarkson, SG ;
Leadon, SA .
SCIENCE, 1997, 275 (5302) :990-993
[62]   The importance of repairing stalled replication forks [J].
Cox, MM ;
Goodman, MF ;
Kreuzer, KN ;
Sherratt, DJ ;
Sandler, SJ ;
Marians, KJ .
NATURE, 2000, 404 (6773) :37-41
[63]   DNA-end-joining: from yeast to man [J].
Critchlow, SE ;
Jackson, SP .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (10) :394-398
[64]   Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV [J].
Critchlow, SE ;
Bowater, RP ;
Jackson, SP .
CURRENT BIOLOGY, 1997, 7 (08) :588-598
[65]   Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans [J].
Cromie, GA ;
Connelly, JC ;
Leach, DRF .
MOLECULAR CELL, 2001, 8 (06) :1163-1174
[66]   Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding [J].
Daniels, DS ;
Mol, CD ;
Arvai, AS ;
Kanugula, S ;
Pegg, AE ;
Tainer, JA .
EMBO JOURNAL, 2000, 19 (07) :1719-1730
[67]   Novel dominant mutations in Saccharomyces cerevisiae MSH6 [J].
Das Gupta, R ;
Kolodner, RD .
NATURE GENETICS, 2000, 24 (01) :53-56
[68]   Chemistry of glycosylases and endonucleases involved in base-excision repair [J].
David, SS ;
Wiliams, SD .
CHEMICAL REVIEWS, 1998, 98 (03) :1221-1261
[69]   Role of BRCA2 in control of the RAD51 recombination and DNA repair protein [J].
Davies, AA ;
Masson, JY ;
Mcllwraith, MJ ;
Stasiak, AZ ;
Stasiak, A ;
Venkitaraman, AR ;
West, SC .
MOLECULAR CELL, 2001, 7 (02) :273-282
[70]   Nucleotide excision repair and human syndromes [J].
de Boer, J ;
Hoeijmakers, JHJ .
CARCINOGENESIS, 2000, 21 (03) :453-460