miR-34 miRNAs provide a barrier for somatic cell reprogramming

被引:318
作者
Choi, Yong Jin [1 ]
Lin, Chao-Po [1 ]
Ho, Jaclyn J. [1 ]
He, Xingyue
Okada, Nobuhiro [1 ]
Bu, Pengcheng [1 ]
Zhong, Yingchao [1 ]
Kim, Sang Yong [2 ]
Bennett, Margaux J. [1 ]
Chen, Caifu [3 ]
Ozturk, Arzu [4 ]
Hicks, Geoffrey G. [4 ]
Hannon, Greg J. [5 ]
He, Lin [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Cellular & Dev Biol, Berkeley, CA 94705 USA
[2] Iransgenet Facil, Woodbury, NY 11797 USA
[3] Life Technol Corp, Genom Assays R&D, Foster City, CA 94404 USA
[4] Manitoba Inst Cell Biol, Winnipeg, MB R3E 0V9, Canada
[5] Cold Spring Harbor Lab, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
基金
美国国家科学基金会;
关键词
STEM-CELLS; SELF-RENEWAL; MOUSE; PLURIPOTENCY; MICRORNAS; EXPRESSION; DIFFERENTIATION; BIOGENESIS; MECHANISMS;
D O I
10.1038/ncb2366
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Somatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency(1-5). So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation(1,3), indicating that additional p53 targets may regulate this process. here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. Mir34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation for Mir34a promoted iPSC generation without compromising self-renewal or differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (also known as N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three miR-34 miRNAs acted cooperatively in this process. taken together, our findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.
引用
收藏
页码:1353 / U154
页数:17
相关论文
共 46 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency [J].
Anokye-Danso, Frederick ;
Trivedi, Chinmay M. ;
Juhr, Denise ;
Gupta, Mudit ;
Cui, Zheng ;
Tian, Ying ;
Zhang, Yuzhen ;
Yang, Wenli ;
Gruber, Peter J. ;
Epstein, Jonathan A. ;
Morrisey, Edward E. .
CELL STEM CELL, 2011, 8 (04) :376-388
[3]   Senescence impairs successful reprogramming to pluripotent stem cells [J].
Banito, Ana ;
Rashid, Sheikh T. ;
Acosta, Juan Carlos ;
Li, SiDe ;
Pereira, Carlos F. ;
Geti, Imbisaat ;
Pinho, Sandra ;
Silva, Jose C. ;
Azuara, Veronique ;
Walsh, Martin ;
Vallier, Ludovic ;
Gil, Jesus .
GENES & DEVELOPMENT, 2009, 23 (18) :2134-2139
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells [J].
Brambrink, Tobias ;
Foreman, Ruth ;
Welstead, G. Grant ;
Lengner, Christopher J. ;
Wernig, Marius ;
Suh, Heikyung ;
Jaenisch, Rudolf .
CELL STEM CELL, 2008, 2 (02) :151-159
[6]   Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis [J].
Chang, Tsung-Cheng ;
Wentzel, Erik A. ;
Kent, Oliver A. ;
Ramachandran, Kalyani ;
Mullendore, Michael ;
Lee, Kwang Hyuck ;
Feldmann, Georg ;
Yamakuchi, Munekazu ;
Ferlito, Marcella ;
Lowenstein, Charles J. ;
Arking, Dan E. ;
Beer, Michael A. ;
Maitra, Anirban ;
Mendell, Joshua T. .
MOLECULAR CELL, 2007, 26 (05) :745-752
[7]   A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene [J].
Cole, Kristina A. ;
Attiyeh, Edward F. ;
Mosse, Yael P. ;
Laquaglia, Michael J. ;
Diskin, Sharon J. ;
Brodeur, Garrett M. ;
Maris, John M. .
MOLECULAR CANCER RESEARCH, 2008, 6 (05) :735-742
[8]   The colorectal microRNAome [J].
Cummins, JM ;
He, YP ;
Leary, RJ ;
Pagliarini, R ;
Diaz, LA ;
Sjoblom, T ;
Barad, O ;
Bentwich, Z ;
Szafranska, AE ;
Labourier, E ;
Raymond, CK ;
Roberts, BS ;
Juhl, H ;
Kinzler, KW ;
Vogelstein, B ;
Velculescu, VE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3687-3692
[9]   Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo [J].
Debacq-Chainiaux, Florence ;
Erusalimsky, Jorge D. ;
Campisi, Judith ;
Toussaint, Olivier .
NATURE PROTOCOLS, 2009, 4 (12) :1798-1806
[10]   Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? [J].
Filipowicz, Witold ;
Bhattacharyya, Suvendra N. ;
Sonenberg, Nahum .
NATURE REVIEWS GENETICS, 2008, 9 (02) :102-114