Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054

被引:93
作者
Rudolf, Andreas [1 ,2 ]
Baudel, Henrique [3 ,4 ]
Zacchi, Guido [1 ]
Hahn-Hagerdal, Biirbel [3 ]
Liden, Gunnar [1 ]
机构
[1] Lund Univ, Dept Chem Engn, SE-22100 Lund, Sweden
[2] Tech Univ Denmark, Biosyst Dept, Riso Natl Lab, DK-4000 Roskilde, Denmark
[3] Lund Univ, Dept Appl Microbiol, SE-22100 Lund, Sweden
[4] HM Baudel Consulting, BR-54440290 Pernambuco, Brazil
关键词
SSF; sugar cane bagasse; xylose fermentation; Saccharomyces TMB3400; Pichia stipitis CBS6054; strain comparison;
D O I
10.1002/bit.21636
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sugarcane bagasse-a residue from sugar and ethanol production from sugar cane-is a potential raw material for lignocellulosic ethanol production. This material is high in xylan content. A prerequisite for bioethanol production from bagasse is therefore that xylose is efficiently fermented to ethanol, In the current study, ethanolic fermentation of steam-pretreated sugarcane bagasse was assessed in a simultaneous saccharification and fermentation (SSF) set-up using Saccharomyces cerevisiae TMB3400 a recombinant xylose utilizing yeast strain, or Pichia stipitis CBS6054, a naturally xylose utilizing yeast strain. Commercial cellulolytic enzymes were used and the content of water insoluble solids (WIS) was 5% or 7.5%. S. cerevisiae TMB3400 consumed all glucose and large fraction of the xylose in SSF. Almost complete xylose conversion could be achieved at 5% WIS and 32 degrees C. Fermentation did not occur with P. stipitis CBS6054 at pH 5.0. However, at pH 6.0, complete glucose conversion and high xylose conversion (> 70%) was obtained. Microaeration was required for P. stipitis CBS6054. This was not necessary for S. cerevisiae TMB3400.
引用
收藏
页码:783 / 790
页数:8
相关论文
共 40 条
[31]  
Sluiter A., 2004, Determination of structural carbohydrates and lignin in biomass
[32]   The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae [J].
Taherzadeh, MJ ;
Liden, G ;
Gustafsson, L ;
Niklasson, C .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1996, 46 (02) :176-182
[33]  
Takagi M., 1977, P BIOCONVERSION S, P551
[34]   Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae [J].
Taniguchi, M ;
Tohma, T ;
Itaya, T ;
Fujii, M .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1997, 83 (04) :364-370
[35]   ALCOHOLIC FERMENTATION OF DEUTERIUM-XYLOSE BY YEASTS [J].
TOIVOLA, A ;
YARROW, D ;
VANDENBOSCH, E ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1984, 47 (06) :1221-1223
[36]   PRODUCTION OF ETHANOL FROM SUGAR-CANE BAGASSE HEMICELLULOSE HYDROLYZATE BY PICHIA-STIPITIS [J].
VANZYL, C ;
PRIOR, BA ;
DUPREEZ, JC .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1988, 17 :357-369
[37]   TOXICITY OF OCTANOIC-ACID IN SACCHAROMYCES-CEREVISIAE AT TEMPERATURES BETWEEN 8.5-DEGREES-C AND 30-DEGREES-C [J].
VIEGAS, CA ;
SACORREIA, I .
ENZYME AND MICROBIAL TECHNOLOGY, 1995, 17 (09) :826-831
[38]   Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054 [J].
Wahlbom, CF ;
van Zyl, WH ;
Jönsson, LJ ;
Hahn-Hägerdal, B ;
Otero, RRC .
FEMS YEAST RESEARCH, 2003, 3 (03) :319-326
[39]   Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase [J].
Walfridsson, M ;
Bao, XM ;
Anderlund, M ;
Lilius, G ;
Bulow, L ;
HahnHagerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (12) :4648-4651