Methods of single-molecule fluorescence spectroscopy and microscopy

被引:658
作者
Moerner, WE [1 ]
Fromm, DP [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
D O I
10.1063/1.1589587
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Optical spectroscopy at the ultimate limit of a single molecule has grown over the past dozen years into a powerful technique for exploring the individual nanoscale behavior of molecules in complex local environments. Observing a single molecule removes the usual ensemble average, allowing the exploration of hidden heterogeneity in complex condensed phases as well as direct observation of dynamical state changes arising from photophysics and photochemistry, without synchronization. This article reviews the experimental techniques of single-molecule fluorescence spectroscopy and microscopy with emphasis on studies at room temperature where the same single molecule is studied for an extended period. Key to successful single-molecule detection is the need to optimize signal-to-noise ratio, and the physical parameters affecting both signal and noise are described in detail. Four successful microscopic methods including the wide-field techniques of epifluorescence and total internal reflection, as well as confocal and near-field optical scanning microscopies are described. In order to extract the maximum amount of information from an experiment, a wide array of properties of the emission can be recorded, such as polarization, spectrum, degree of energy transfer, and spatial position. Whatever variable is measured, the time dependence of the parameter can yield information about excited state lifetimes, photochemistry, local environmental fluctuations, enzymatic activity, quantum optics, and many other dynamical effects. Due to the breadth of applications now appearing, single-molecule spectroscopy and microscopy may be viewed as useful new tools for the study of dynamics in complex systems, especially where ensemble averaging or lack of synchronization may obscure the details of the process under study. (C) 2003 American Institute of Physics.
引用
收藏
页码:3597 / 3619
页数:23
相关论文
共 161 条
[1]   Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging [J].
Adachi, K ;
Yasuda, R ;
Noji, H ;
Itoh, H ;
Harada, Y ;
Yoshida, M ;
Kinosita, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7243-7247
[2]  
Ambrose WP, 1999, CYTOMETRY, V36, P224, DOI 10.1002/(SICI)1097-0320(19990701)36:3<224::AID-CYTO12>3.3.CO
[3]  
2-A
[4]   Single molecule fluorescence spectroscopy at ambient temperature [J].
Ambrose, WP ;
Goodwin, PM ;
Jett, JH ;
Van Orden, A ;
Werner, JH ;
Keller, RA .
CHEMICAL REVIEWS, 1999, 99 (10) :2929-2956
[5]   DETECTION AND SPECTROSCOPY OF SINGLE PENTACENE MOLECULES IN A PARA-TERPHENYL CRYSTAL BY MEANS OF FLUORESCENCE EXCITATION [J].
AMBROSE, WP ;
BASCHE, T ;
MOERNER, WE .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (10) :7150-7163
[6]   ALTERATIONS OF SINGLE-MOLECULE FLUORESCENCE LIFETIMES IN NEAR-FIELD OPTICAL MICROSCOPY [J].
AMBROSE, WP ;
GOODWIN, PM ;
MARTIN, JC ;
KELLER, RA .
SCIENCE, 1994, 265 (5170) :364-367
[7]   TOTAL INTERNAL-REFLECTION FLUORESCENCE [J].
AXELROD, D ;
BURGHARDT, TP ;
THOMPSON, NL .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1984, 13 :247-268
[8]   Three-dimensional orientations of polymer-bound single molecules [J].
Bartko, AP ;
Dickson, RM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (16) :3053-3056
[9]   DIRECT SPECTROSCOPIC OBSERVATION OF QUANTUM JUMPS OF A SINGLE-MOLECULE [J].
BASCHE, T ;
KUMMER, S ;
BRAUCHLE, C .
NATURE, 1995, 373 (6510) :132-134
[10]   PHOTON ANTIBUNCHING IN THE FLUORESCENCE OF A SINGLE DYE MOLECULE TRAPPED IN A SOLID [J].
BASCHE, T ;
MOERNER, WE ;
ORRIT, M ;
TALON, H .
PHYSICAL REVIEW LETTERS, 1992, 69 (10) :1516-1519