Exploiting synergies of mobile mapping sensors and deep learning for traffic sign recognition systems

被引:37
作者
Arcos-Garcia, Alvaro [1 ]
Soilan, Mario [2 ]
Alvarez-Garcia, Juan A. [1 ]
Riveiro, Bel [2 ]
机构
[1] Univ Seville, Comp Languages & Syst Dept, Avda Reina Mercedes S-N, E-41012 Seville, Spain
[2] Univ Vigo, Dept Mat Engn Appl Mech & Construct, Torrecedeira 86, Vigo 36208, Spain
关键词
Mobile mapping sensors; Point cloud; Traffic sign; Deep learning; Convolutional neural network; Spatial transformer network; LASER;
D O I
10.1016/j.eswa.2017.07.042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an efficient two-stage traffic sign recognition system. First, 3D point cloud data is acquired by a LINX Mobile Mapper system and processed to automatically detect traffic signs based on their retro-reflective material. Then, classification is carried out over the point cloud projection on RGB images applying a Deep Neural Network which comprises convolutional and spatial transformer layers. This network is evaluated in three European traffic sign datasets. On the GTSRB, it outperforms previous state-of-the-art published works and achieves top-1 rank with an accuracy of 99.71%. Furthermore, a Spanish traffic sign recognition dataset is released. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:286 / 295
页数:10
相关论文
共 32 条
  • [11] Evaluation of road signs using radiometric and geometric data from terrestrial LiDAR
    Gonzalez-Jorge, Higinio
    Riveiro, Belen
    Armesto, Julia
    Arias, Pedro
    [J]. OPTICA APPLICATA, 2013, 43 (03) : 421 - 433
  • [12] Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge
    Gressin, Adrien
    Mallet, Clement
    Demantke, Jerome
    David, Nicolas
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 79 : 240 - 251
  • [13] Local texture patterns for traffic sign recognition using higher order spectra
    Gudigar, Anjan
    Chokkadi, Shreesha
    Raghavendra, U.
    Acharya, U. Rajendra
    [J]. PATTERN RECOGNITION LETTERS, 2017, 94 : 202 - 210
  • [14] What is the Best Multi-Stage Architecture for Object Recognition?
    Jarrett, Kevin
    Kavukcuoglu, Koray
    Ranzato, Marc'Aurelio
    LeCun, Yann
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 2146 - 2153
  • [15] Traffic Sign Recognition With Hinge Loss Trained Convolutional Neural Networks
    Jin, Junqi
    Fu, Kun
    Zhang, Changshui
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (05) : 1991 - 2000
  • [16] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [17] An optimization on pictogram identification for the road-sign recognition task using SVMs
    Maldonado Bascon, S.
    Acevedo Rodriguez, J.
    Lafuente Arroyo, S.
    Fernandez-Caballero, A.
    Lopez-Ferreras, F.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (03) : 373 - 383
  • [18] Mathias Markus, 2013, The 2013 International Joint Conference on Neural Networks (IJCNN), DOI 10.1109/IJCNN.2013.6707049
  • [19] Semantic fusion of laser and vision in pedestrian detection
    Oliveira, Luciano
    Nunes, Urbano
    Peixoto, Paulo
    Silva, Marco
    Moita, Fernando
    [J]. PATTERN RECOGNITION, 2010, 43 (10) : 3648 - 3659
  • [20] Recognizing basic structures from mobile laser scanning data for road inventory studies
    Pu, Shi
    Rutzinger, Martin
    Vosselman, George
    Elberink, Sander Oude
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) : S28 - S39