The MRN complex: coordinating and mediating the response to broken chromosomes

被引:215
作者
van den Bosch, M
Bree, RT
Lowndes, NF
机构
[1] Natl Univ Ireland, Dept Biochem, Genome Stabil Lab, Galway, Ireland
[2] Natl Univ Ireland, Natl Ctr Biomed Engn Sci, Galway, Ireland
关键词
D O I
10.1038/sj.embor.embor925
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The MRE11-RAD50-NBS1 (MRN) protein complex has been linked to many DNA metabolic events that involve DNA double-stranded breaks (DSBs). In vertebrate cells, all three components are encoded by essential genes, and hypomorphic mutations in any of the human genes can result in genome-instability syndromes. MRN is one of the first factors to be localized to the DNA lesion, where it might initially have a structural role by tethering together, and therefore stabilizing, broken chromosomes. This suggests that MRN could function as a lesion-specific sensor. As well as binding to DNA, MRN has other roles in both the processing and assembly of large macromolecular complexes ( known as foci) that facilitate efficient DSB responses. Recently, a novel mediator protein, mediator of DNA damage checkpoint protein 1 (MDC1), was shown to co-immunoprecipitate with the MRN complex and regulate MRE11 foci formation. However, whether the initial recruitment of MRN to DSBs requires MDC1 is unclear. Here, we focus on recent developments in MRN research and propose a model for how DSBs are sensed and the cellular responses to them are mediated.
引用
收藏
页码:844 / 849
页数:6
相关论文
共 47 条
[1]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[2]   Non-homologous end joining as a mechanism of DNA repair [J].
Barnes, DE .
CURRENT BIOLOGY, 2001, 11 (12) :R455-R457
[3]   Cancer predisposition and hematopoietic failure in Rad50S/S mice [J].
Bender, CF ;
Sikes, ML ;
Sullivan, R ;
Huye, LE ;
Le Beau, MM ;
Roth, DB ;
Mirzoeva, OK ;
Oltz, EM ;
Petrini, JHJ .
GENES & DEVELOPMENT, 2002, 16 (17) :2237-2251
[4]  
Bressan DA, 1999, MOL CELL BIOL, V19, P7681
[5]   ATM phosphorylates histone H2AX in response to DNA double-strand breaks [J].
Burma, S ;
Chen, BP ;
Murphy, M ;
Kurimasa, A ;
Chen, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :42462-42467
[6]   Chk2 activation dependence on Nbs1 after DNA damage [J].
Buscemi, G ;
Savio, C ;
Zannini, L ;
Miccichè, F ;
Masnada, D ;
Nakanishi, M ;
Tauchi, H ;
Komatsu, K ;
Mizutani, S ;
Khanna, K ;
Chen, P ;
Concannon, P ;
Chessa, L ;
Delia, D .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (15) :5214-5222
[7]   Genomic instability in mice lacking histone H2AX [J].
Celeste, A ;
Petersen, S ;
Romanienko, PJ ;
Fernandez-Capetillo, O ;
Chen, HT ;
Sedelnikova, OA ;
Reina-San-Martin, B ;
Coppola, V ;
Meffre, E ;
Difilippantonio, MJ ;
Redon, C ;
Pilch, DR ;
Olaru, A ;
Eckhaus, M ;
Camerini-Otero, RD ;
Tessarollo, L ;
Livak, F ;
Manova, K ;
Bonner, WM ;
Nussenzweig, MC ;
Nussenzweig, A .
SCIENCE, 2002, 296 (5569) :922-927
[8]   The Mre11 complex: At the crossroads of DNA repair and checkpoint signalling [J].
D'Amours, D ;
Jackson, SP .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (05) :317-327
[9]   Human Rad50/Mre11 is a flexible complex that can tether DNA ends [J].
de Jager, M ;
van Noort, J ;
van Gent, DC ;
Dekker, C ;
Kanaar, R ;
Wyman, C .
MOLECULAR CELL, 2001, 8 (05) :1129-1135
[10]   DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP [J].
de Jager, M ;
Wyman, C ;
van Gent, DC ;
Kanaar, R .
NUCLEIC ACIDS RESEARCH, 2002, 30 (20) :4425-4431