Microelectrocle array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity

被引:114
作者
Arnold, FJL
Hofmann, F
Bengtson, CP
Wittmann, M
Vanhoutte, P
Bading, H
机构
[1] Heidelberg Univ, Dept Neurol, Interdisciplinary Ctr Neurosci IZN, D-69120 Heidelberg, Germany
[2] MRC, Mol Biol Lab, Cambridge, England
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 564卷 / 01期
关键词
D O I
10.1113/jphysiol.2004.077446
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A simplified cell culture system was developed to study neuronal plasticity. As changes in synaptic strength may alter network activity patterns, we grew hippocampal neurones on a microelectrode array (MEA) and monitored their collective behaviour with 60 electrodes simultaneously. We found that exposure of the network for 15 min to the GABA(A) receptor antagonist bicuculline induced an increase in synaptic efficacy at excitatory synapses that was associated with an increase in the frequency of miniature AMPA receptor-mediated EPSCs and a change in network activity from uncoordinated firing of neurones (lacking any recognizable pattern) to a highly organized, periodic and synchronous burst pattern. Induction of recurrent synchronous bursting was dependent on NMDA receptor activation and required extracellular signal-regulated kinase (ERK)1/2 signalling and translation of pre-existing mRNAs. Once induced, the burst pattern persisted for several days; its maintenance phase (> 4 h) was dependent on gene transcription taking place in a critical period of 120 min following induction. Thus, cultured hippocampal neurones display a simple, transcription and protein synthesis-dependent form of plasticity. The non-invasive nature of MEA recordings provides a significant advantage over traditional assays for synaptic connectivity (i.e. long-term potentiation in brain slices) and facilitates the search for activity-regulated genes critical for late-phase plasticity.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 78 条
[1]   Epileptiform activity in rat hippocampus strengthens excitatory synapses [J].
Abegg, MH ;
Savic, N ;
Ehrengruber, MU ;
McKinney, RA ;
Gähwiler, BH .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 554 (02) :439-448
[2]   Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice:: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration [J].
Alarcón, JM ;
Malleret, G ;
Touzani, K ;
Vronskaya, S ;
Ishii, S ;
Kandel, ER ;
Barco, A .
NEURON, 2004, 42 (06) :947-959
[3]   Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation [J].
Antonova, I ;
Arancio, O ;
Trillat, AC ;
Wang, HG ;
Zablow, L ;
Udo, H ;
Kandel, ER ;
Hawkins, RD .
SCIENCE, 2001, 294 (5546) :1547-1550
[4]   Synaptic and intrinsic mechanisms shape synchronous oscillations in hippocampal neurons in culture [J].
Bacci, A ;
Verderio, C ;
Pravettoni, E ;
Matteoli, M .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (02) :389-397
[5]   Transcription-dependent neuronal plasticity - The nuclear calcium hypothesis [J].
Bading, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (17) :5280-5283
[6]   N-METHYL-D-ASPARTATE RECEPTORS ARE CRITICAL FOR MEDIATING THE EFFECTS OF GLUTAMATE ON INTRACELLULAR CALCIUM-CONCENTRATION AND IMMEDIATE-EARLY GENE-EXPRESSION IN CULTURED HIPPOCAMPAL-NEURONS [J].
BADING, H ;
SEGAL, MM ;
SUCHER, NJ ;
DUDEK, H ;
LIPTON, SA ;
GREENBERG, ME .
NEUROSCIENCE, 1995, 64 (03) :653-664
[7]   REGULATION OF GENE-EXPRESSION IN HIPPOCAMPAL-NEURONS BY DISTINCT CALCIUM SIGNALING PATHWAYS [J].
BADING, H ;
GINTY, DD ;
GREENBERG, ME .
SCIENCE, 1993, 260 (5105) :181-186
[8]   STIMULATION OF PROTEIN TYROSINE PHOSPHORYLATION BY NMDA RECEPTOR ACTIVATION [J].
BADING, H ;
GREENBERG, ME .
SCIENCE, 1991, 253 (5022) :912-914
[9]   Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses [J].
Bains, JS ;
Longacher, JM ;
Staley, KJ .
NATURE NEUROSCIENCE, 1999, 2 (08) :720-726
[10]   Cell death and synaptic reorganizations produced by seizures [J].
Ben-Ari, Y .
EPILEPSIA, 2001, 42 :5-7