Inherently self-calibrating non-cartesian parallel imaging

被引:46
作者
Yeh, EN
Stuber, M
McKenzie, CA
Botnar, RM
Leiner, T
Ohliger, MA
Grant, AK
Willig-Onwuachi, JD
Sodickson, DK
机构
[1] Beth Israel Deaconess Med Ctr, Lab Biomed Imaging Res, Dept Radiol, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA USA
[3] Harvard Mit Div Hlth Sci & Technol, Boston, MA USA
[4] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
[5] Beth Israel Deaconess Med Ctr, Div Cardiovasc, Dept Med, Boston, MA USA
[6] Maastricht Univ Hosp, Dept Radiol, Maastricht, Netherlands
[7] Univ Calif Davis, Dept Radiol, Davis, CA USA
关键词
parallel MRI; self-calibration; non-Cartesian imaging; coil arrays; rapid imaging;
D O I
10.1002/mrm.20517
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 19 条
[1]  
Börnert P, 1999, MAGN RESON MATER PHY, V9, P29
[2]   Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography [J].
Börnert, P ;
Stuber, M ;
Botnar, RM ;
Kissinger, KV ;
Koken, P ;
Spuentrup, E ;
Manning, WJ .
MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (04) :789-794
[3]  
Eggers H., 2002, P 10 ANN M ISMRM HON, P743
[4]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[5]  
Griswold MA, 2003, P INT SOC MAGN RESON, V11, P2349
[6]   VD-AUTO-SMASH imaging [J].
Heidemann, RM ;
Griswold, MA ;
Haase, A ;
Jakob, PM .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (06) :1066-1074
[7]   FAST 3-DIMENSIONAL MAGNETIC-RESONANCE-IMAGING [J].
IRARRAZABAL, P ;
NISHIMURA, DG .
MAGNETIC RESONANCE IN MEDICINE, 1995, 33 (05) :656-662
[8]   SELECTION OF A CONVOLUTION FUNCTION FOR FOURIER INVERSION USING GRIDDING [J].
JACKSON, JI ;
MEYER, CH ;
NISHIMURA, DG ;
MACOVSKI, A .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1991, 10 (03) :473-478
[9]  
Jakob PM, 1998, MAGN RESON MATER PHY, V7, P42
[10]  
LEE RF, 2003, P 11 ANN M ISMRM TOR, P2350