Out-of-field dose equivalents delivered by proton therapy of prostate cancer

被引:88
作者
Wroe, Andrew [1 ]
Rosenfeld, Anatoly
Schulte, Reinhard
机构
[1] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2500, Australia
[2] Loma Linda Univ, Med Ctr, Dept Radiat Therapy, Loma Linda, CA 92350 USA
关键词
proton therapy; dose equivalent; neutrons; microdosimetry;
D O I
10.1118/1.2759839
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Measurements were performed to assess the dose equivalent outside a primary proton treatment field, using a silicon-on-insulator (SOI) microdosimeter. The SOI microdosimeter was placed on the surface of an anthropomorphic phantom and dose equivalents were determined as a function of lateral distance from a typical passively scattered and modulated prostate treatment field. Measurements were also completed within a polystyrene plate phantom as a function of depth for a distance of 5 cm from the field edge, as function of lateral distance from field edge at two different depths, and as a function of distance from the distal edge on the central beam axis. The dose equivalent at the surface of the anthropomorphic phantom decreases from 3.9 to 0.18 mSv/Gy when the lateral distance from the proton field edge increases from 2.5 to 60 cm. Measurements along the proton depth dose distribution at a constant distance of 5 cm from the primary field edge indicate a decrease in dose equivalent as a function of depth, with a 38% decrease relative to the surface dose at a depth of 5 cm in polystyrene. Measurements completed as a function of lateral distance from the primary field at two separate depths within polystyrene illustrate a convergence of the dose equivalent at approximately 20 cm from the primary field edge. Past the distal edge of the spread-out Bragg peak dose equivalents decrease exponentially for increasing distance, with an initial value of 1.6 mSv/Gy at 0.6 cm from the distal edge. Silicon microdosimetry measurements were also compared with published results obtained utilizing different measurement techniques. This study demonstrates the applicability of SOI microdosimetry in determining the dose equivalent outside proton treatment fields, and provides valuable information on the dose equivalent both at the surface and at depth experienced by prostate cancer patients treated with protons. (c) 2007 American Association of Physicists in Medicine.
引用
收藏
页码:3449 / 3456
页数:8
相关论文
共 25 条
[1]  
Booz J., 1983, Microdosimetry ICRU Report 36, V19, P1
[2]   Solid state microdosimetry [J].
Bradley, PD ;
Rosenfeld, AB ;
Zaider, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2001, 184 (1-2) :135-157
[3]   Performance of silicon microdosimetry detectors in boron neutron capture therapy [J].
Bradley, PD ;
Rosenfeld, AB ;
Allen, B ;
Coderre, J ;
Capala, J .
RADIATION RESEARCH, 1999, 151 (03) :235-243
[4]   Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe [J].
Cornelius, I ;
Siegele, R ;
Rosenfeld, AB ;
Cohen, DD .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 190 :335-338
[5]   Intensity-modulated radiation therapy, protons, and the risk of second cancers [J].
Hall, Eric J. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 65 (01) :1-7
[6]  
International Commission on Radiation Units and Measurements, 1986, ICRU40
[7]  
KOEHLER A M, 1977, Medical Physics (Woodbury), V4, P297, DOI 10.1118/1.594317
[8]   Cone-beam-CT guided radiation therapy:: technical implementation [J].
Létourneau, D ;
Wong, JW ;
Oldham, M ;
Gulam, M ;
Watt, L ;
Jaffray, DA ;
Siewerdsen, JH ;
Martinez, AA .
RADIOTHERAPY AND ONCOLOGY, 2005, 75 (03) :279-286
[9]   Intensity Modulated Proton Therapy at PSI: Things we have learnt (and are still learning). [J].
Lomax, A ;
Albertini, F ;
Bolsi, A ;
Steneker, M ;
Boehringer, T ;
Coray, A ;
Lin, S ;
Pedroni, E ;
Rutz, HP ;
Timmermann, B ;
Goitein, G .
RADIOTHERAPY AND ONCOLOGY, 2005, 76 :S54-S55
[10]   Spot scanning proton therapy: Treatment planning and treatment verification [J].
Lomax, AJ ;
Albertini, F ;
Boehringer, T ;
Bols, A ;
Bosshardt, M ;
Coray, A ;
Goitein, G ;
Lin, S ;
Pedroni, E ;
Stenecker, M ;
Verwey, J .
RADIOTHERAPY AND ONCOLOGY, 2006, 78 :S21-S21