Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A

被引:205
作者
Corrionero, Anna [1 ,2 ]
Minana, Belen [1 ,2 ]
Valcarcel, Juan [1 ,2 ,3 ]
机构
[1] Ctr Regulacio Genom, Barcelona 08003, Spain
[2] Univ Pompeu Fabra, Barcelona 08003, Spain
[3] ICREA, Barcelona 08003, Spain
关键词
spliceostatin A; U2; snRNP; branch point; splicing fidelity; alternative splicing; PRE-MESSENGER-RNA; SPLICEOSOMAL COMPLEX-E; HUMAN U2 SNRNA; PYRUVATE-KINASE; FUNCTIONAL ASSOCIATION; TUMOR-SUPPRESSOR; STRUCTURAL BASIS; SITE AG; PROTEIN; SEQUENCE;
D O I
10.1101/gad.2014311
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Spliceostatin A (SSA) is a stabilized derivative of a Pseudomonas bacterial fermentation product that displays potent anti-proliferative and anti-tumor activities in cancer cells and animal models. The drug inhibits pre-mRNA splicing in vitro and in vivo and binds SF3b, a protein subcomplex of U2 small nuclear ribonucleoprotein (snRNP), which is essential for recognition of the pre-mRNA branch point. We report that SSA prevents interaction of an SF3b 155-kDa subunit with the pre-mRNA, concomitant with nonproductive recruitment of U2 snRNP to sequences 59 of the branch point. Differences in base-pairing potential with U2 snRNA in this region lead to different sensitivity of 39 splice sites to SSA, and to SSA-induced changes in alternative splicing. Indeed, rather than general splicing inhibition, splicing-sensitive microarray analyses reveal specific alternative splicing changes induced by the drug that significantly overlap with those induced by knockdown of SF3b 155. These changes lead to down-regulation of genes important for cell division, including cyclin A2 and Aurora A kinase, thus providing an explanation for the anti-proliferative effects of SSA. Our results reveal a mechanism that prevents nonproductive base-pairing interactions in the spliceosome, and highlight the regulatory and cancer therapeutic potential of perturbing the fidelity of splice site recognition.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 78 条
[1]   Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance [J].
Bakkour, Nadia ;
Lin, Yea-Lih ;
Maire, Sophie ;
Ayadi, Lilia ;
Mahuteau-Betzer, Florence ;
Nguyen, Chi Hung ;
Mettling, Clement ;
Portales, Pierre ;
Grierson, David ;
Chabot, Benoit ;
Jeanteur, Philippe ;
Branlant, Christiane ;
Corbeau, Pierre ;
Tazi, Jamal .
PLOS PATHOGENS, 2007, 3 (10) :1530-1539
[2]   Deciphering the splicing code [J].
Barash, Yoseph ;
Calarco, John A. ;
Gao, Weijun ;
Pan, Qun ;
Wang, Xinchen ;
Shai, Ofer ;
Blencowe, Benjamin J. ;
Frey, Brendan J. .
NATURE, 2010, 465 (7294) :53-59
[3]   CORRESPONDENCE BETWEEN A MAMMALIAN SPLICEOSOME COMPONENT AND AN ESSENTIAL YEAST SPLICING FACTOR [J].
BENNETT, M ;
REED, R .
SCIENCE, 1993, 262 (5130) :105-108
[4]   The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC [J].
Berglund, JA ;
Chua, K ;
Abovich, N ;
Reed, R ;
Rosbash, M .
CELL, 1997, 89 (05) :781-787
[5]   RBM5/Luca-15/H37 Regulates Fas Alternative Splice Site Pairing after Exon Definition [J].
Bonnal, Sophie ;
Martinez, Concepcion ;
Foerch, Patrik ;
Bachi, Angela ;
Wilm, Matthias ;
Valcarcel, Juan .
MOLECULAR CELL, 2008, 32 (01) :81-95
[6]   INTERACTION OF MAMMALIAN SPLICING FACTOR SF3A WITH U2 SNRNP AND RELATION OF ITS 60-KD SUBUNIT TO YEAST PRP9 [J].
BROSI, R ;
GRONING, K ;
BEHRENS, SE ;
LUHRMANN, R ;
KRAMER, A .
SCIENCE, 1993, 262 (5130) :102-105
[7]   Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches [J].
Chen, Mo ;
Manley, James L. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (11) :741-754
[8]   The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth [J].
Christofk, Heather R. ;
Vander Heiden, Matthew G. ;
Harris, Marian H. ;
Ramanathan, Arvind ;
Gerszten, Robert E. ;
Wei, Ru ;
Fleming, Mark D. ;
Schreiber, Stuart L. ;
Cantley, Lewis C. .
NATURE, 2008, 452 (7184) :230-U74
[9]   The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism [J].
Clower, Cynthia V. ;
Chatterjee, Deblina ;
Wang, Zhenxun ;
Cantley, Lewis C. ;
Heiden, Matthew G. Vander ;
Krainer, Adrian R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (05) :1894-1899
[10]   RNA and Disease [J].
Cooper, Thomas A. ;
Wan, Lili ;
Dreyfuss, Gideon .
CELL, 2009, 136 (04) :777-793