Approximated fast estimator for the shape parameter of generalized Gaussian distribution

被引:48
作者
Krupinski, R [1 ]
Purczynski, J [1 ]
机构
[1] Tech Univ Szczecin, Chair Signal Proc & Multimedia Engn, PL-71126 Szczecin, Poland
关键词
generalized Gaussian distribution; estimation; maximum likelihood estimation; moment methods;
D O I
10.1016/j.sigpro.2005.05.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generalized Gaussian distribution (GGD) is often used to characterize the statistical behaviour of a multimedia signal [J.R. Ohm, Multimedia Communication Technology, Representation, Transmission and Identification of Multimedia Signals. Springer, Berlin, 2004]. Although, the estimation of the shape parameter can be based on the maximum likelihood method, this method is computationally demanding. The computational complexity can be reduced by the application of the moment method for the first and second absolute moments. However, this method does not result in small error for the small values of GGD shape parameter. Furthermore, the inversion function often requires storing all control points of a curve. The method presented in this paper approximates the estimation of GGD shape parameter in the range 0.3-3 keeping small relative mean square error (RMSE) for this range. The method is based oil the approximation of the moment method in four intervals. The assumed model allows a fast estimation of GGD shape parameter for real-time applications and requires storing only 12 coefficients. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 21 条
[1]   Novel Bayesian multiscale method for speckle removal in medical ultrasound images [J].
Achim, A ;
Bezerianos, A ;
Tsakalides, P .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (08) :772-783
[2]   Estimation based on entropy matching for generalized Gaussian PDF modeling [J].
Aiazzi, B ;
Alparone, L ;
Baronti, S .
IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (06) :138-140
[3]  
[Anonymous], 2004, SIG COM TEC
[4]  
[Anonymous], COMPUTER SCI TECHNIC
[5]   ON THE MODELING OF DCT AND SUBBAND IMAGE DATA FOR COMPRESSION [J].
BIRNEY, KA ;
FISCHER, TR .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (02) :186-193
[6]  
Box GE., 2011, BAYESIAN INFERENCE S
[7]  
Clarke R. J., 1985, TRANSFORM CODING IMA
[8]  
Diver F.W.J., 1974, ASYMPTOTICS SPECIAL, DOI 10.1201/9781439864548
[9]  
DU YG, 1991, AEU-ARCH ELEKTRON UB, V45, P148
[10]   OPTIMUM QUANTIZER PERFORMANCE FOR A CLASS OF NON-GAUSSIAN MEMORYLESS SOURCES [J].
FARVARDIN, N ;
MODESTINO, JW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (03) :485-497