Generalized projective synchronization of a unified chaotic system

被引:180
作者
Yan, JP [1 ]
Li, CP
机构
[1] Hunan Univ Sci & Engn, Dept Math, Hunan 425006, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[3] Univ Pretoria, Dept Elect Engn & Comp Engn, ZA-0002 Pretoria, South Africa
关键词
D O I
10.1016/j.chaos.2005.02.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, a simple but efficient control technique of the generalized projective synchronization is applied to a unified chaotic system. Numerical simulations show that this method works very well, which can also be applied to other chaotic systems. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1119 / 1124
页数:6
相关论文
共 30 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]  
AFRAIMOVICH VS, 1986, IZV VUZ RADIOFIZ+, V29, P1050
[3]   Control of the formation of projective synchronisation in lower-dimensional discrete-time systems [J].
Chee, CY ;
Xu, DL .
PHYSICS LETTERS A, 2003, 318 (1-2) :112-118
[4]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[5]   Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving [J].
GonzalezMiranda, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :R5-R8
[6]   SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL [J].
KAPITANIAK, T .
PHYSICAL REVIEW E, 1994, 50 (02) :1642-1644
[7]  
KAPITANIAK T, 1992, CHAOS SOLITON FRACT, V2, P519
[8]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[9]  
Li C., 2004, CHAOS, V14
[10]   Estimating the Lyapunov exponents of discrete systems [J].
Li, CP ;
Chen, GR .
CHAOS, 2004, 14 (02) :343-346