CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries

被引:213
作者
Wang, Long [1 ,2 ]
Zhao, Xin [1 ,2 ]
Lu, Yuhao [1 ,2 ]
Xu, Maowen [1 ,2 ]
Zhang, Dawei [5 ]
Ruoff, Rodney S. [1 ,2 ]
Stevenson, Keith J. [3 ,4 ]
Goodenough, John B. [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
[5] Hefei Univ Technol, Sch Chem & Engn, Hefei 230009, Peoples R China
关键词
OXYGEN REDUCTION; ION BATTERIES; ALKALINE MEDIA; ANODE MATERIAL; ELECTROLYTE; EVOLUTION; CAPACITY; OXIDE; NANOPLATELETS; PERFORMANCE;
D O I
10.1149/2.068112jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Positive electrodes for the oxygen reduction reaction (ORR) and the oxygen-evolution reaction (OER) play a critical role in fuel cells and metal-air batteries. Tetragonal CoMn2O4 spinel nanoparticles have been grown on the surface of graphene sheets (CMOG) via a two-step synthesis. The ORR/OER catalytic characteristics of CMOG were studied with a rotating-disk electrode. Also a lithium-air primary cell having a non-aqueous electrolyte and a rechargeable lithium-air cell with a Li-ion solid electrolyte separating a non-aqueous anode electrolyte from an alkaline aqueous cathode electrolyte were assembled with a CMOG cathode and tested. The results indicate that a CMOG cathode can provide a catalytic platform of considerable activity for the ORR in both electrolytes and also for the OER in the aqueous electrolyte. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.068112jes] All rights reserved.
引用
收藏
页码:A1379 / A1382
页数:4
相关论文
共 29 条
[11]   Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte [J].
Kuboki, T ;
Okuyama, T ;
Ohsaki, T ;
Takami, N .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :766-769
[12]   Ultrafast Microwave-Assisted Route to Surfactant-Free Ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic Activity [J].
Kundu, Paromita ;
Nethravathi, C. ;
Deshpande, Parag A. ;
Rajamathi, M. ;
Madras, Giridhar ;
Ravishankar, N. .
CHEMISTRY OF MATERIALS, 2011, 23 (11) :2772-2780
[13]   MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction [J].
Li, Yanguang ;
Wang, Hailiang ;
Xie, Liming ;
Liang, Yongye ;
Hong, Guosong ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) :7296-7299
[14]   Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes [J].
Lu, Bangan ;
Cao, Dianxue ;
Wang, Pan ;
Wang, Guiling ;
Gao, Yinyi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) :72-78
[15]   Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries [J].
Lu, Yi-Chun ;
Xu, Zhichuan ;
Gasteiger, Hubert A. ;
Chen, Shuo ;
Hamad-Schifferli, Kimberly ;
Shao-Horn, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (35) :12170-12171
[16]   Aqueous Cathode for Next-Generation Alkali-Ion Batteries [J].
Lu, Yuhao ;
Goodenough, John B. ;
Kim, Youngsik .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (15) :5756-5759
[17]   Rechargeable alkali-ion cathode-flow battery [J].
Lu, Yuhao ;
Goodenough, John B. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10113-10117
[18]   Comparison of preparation routes of spinel catalyst for alkaline fuel cells [J].
Nissinen, T ;
Kiros, Y ;
Gasik, M ;
Lampinen, M .
MATERIALS RESEARCH BULLETIN, 2004, 39 (09) :1195-1208
[19]   Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure [J].
Paek, Seung-Min ;
Yoo, EunJoo ;
Honma, Itaru .
NANO LETTERS, 2009, 9 (01) :72-75
[20]   Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells [J].
Qu, Liangti ;
Liu, Yong ;
Baek, Jong-Beom ;
Dai, Liming .
ACS NANO, 2010, 4 (03) :1321-1326