SUq(n) gauge theory

被引:20
作者
Sudbery, A
机构
[1] Department of Mathematics, University of York, Heslington
关键词
D O I
10.1016/0370-2693(96)00211-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A field theory with local transformations belonging to the quantum group SUq(n) is defined on a classical spacetime, with gauge potentials belonging to a quantum Lie algebra. Gauge transformations are defined for the potentials which lead to the appropriate quantum-group transformations for field strengths and covariant derivatives, defined for all elements of SUq(n) by means of the adjoint action. This guarantees a non-trivial deformation. Gauge-invariant commutation relations are identified.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 14 条
[1]   QUANTUM GROUP CHIRAL-FIELDS AND DIFFERENTIAL YANG-BAXTER EQUATIONS [J].
AREFEVA, IY ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1991, 264 (1-2) :62-68
[2]   QUANTUM GROUP GAUGE-FIELDS [J].
AREFEVA, IY ;
VOLOVICH, IV .
MODERN PHYSICS LETTERS A, 1991, 6 (10) :893-907
[3]   QUANTUM GROUP GAUGE-THEORY ON CLASSICAL SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
PHYSICS LETTERS B, 1993, 298 (3-4) :339-343
[4]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[5]   GAUGE-THEORIES OF QUANTUM GROUPS [J].
CASTELLANI, L .
PHYSICS LETTERS B, 1992, 292 (1-2) :93-98
[6]  
Castellani L., 1993, MOD PHYS LETT A, VA9, P2835
[7]  
DURDEVIC M, QALG9507021
[8]  
HAJAC PM, HEPTH9406129
[9]   GAUGE FIELD-THEORY OF THE QUANTUM GROUP SUQ(2) [J].
HIRAYAMA, M .
PROGRESS OF THEORETICAL PHYSICS, 1992, 88 (01) :111-127
[10]   Q-TRACE FOR QUANTUM GROUPS AND Q-DEFORMED YANG-MILLS THEORY [J].
ISAEV, AP ;
POPOWICZ, Z .
PHYSICS LETTERS B, 1992, 281 (3-4) :271-278