Advanced computational strategies for modelling the evolution of full molecular weight distributions formed during multiarmed (Star) polymerisations

被引:43
作者
Chaffey-Millar, H
Busch, M
Davis, TP
Stenzel, MH
Barner-Kowollik, C [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn & Ind Chem, CAMD, Sydney, NSW 2052, Australia
[2] Tech Univ Darmstadt, Dept Chem Engn & Macromol Sci, D-64287 Darmstadt, Germany
关键词
kinetics (polym.); modelling; reversible addition fragmentation chain transfer (RAFT); simulations; star polymers;
D O I
10.1002/mats.200400075
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel computational strategy is described for the simulation of star polymerisations, allowing for the computation of full molecular weight distributions (MWDs). Whilst the strategy is applicable to a broad range of techniques for the synthesis of star polymers, the focus of the current study is the simulation of MWDs arising from a reversible addition fragmentation chain transfer (RAFT), R-group approach star polymerisation. In this synthetic methodology, the arms of the star grow from a central, polyfunctional moiety, which is formed initially as the refragmenting R-group of a polyfunctional RAFT agent. This synthetic methodology produces polymers with complex MWDs and the current simulation strategy is able to account for the features of such complex MWDs. The strategy involves a kinetic model which describes the reactions of a single arm of a star, the kinetics of which are implemented and simulated using the PREDICI (R) program package. The MWDs resulting from this simulation of single arms are then processed with an algorithm we describe, to generate a full MWD of stars. The algorithm is applicable to stars with an arbitrary number of arms. The kinetic model and subsequent algorithmic processing techniques are described in detail. A simulation has been parameterised using rate coefficients and densities for a 2,2'-azoisobutyronitrile (AIBN) initiated, bulk polymerisation of styrene at 60 degrees C. A number of kinetic parameters have been varied over large ranges. Conversion normalised simulations were performed, leading to information regarding star arm length, polydispersity index (PDI) and the fraction of living arms. These screening processes provided a rigorous test for the kinetic model and also insight into the conditions, which lead to optimal star formation. Finally, full MWDs are simulated for several RAFT agent/initiator ratios as well as for stars with a varying number of arms.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 47 条
[1]   Complex molecular architecture polymers via RAFT [J].
Barner, L ;
Barner-Kowollik, C ;
Davis, TP ;
Stenzel, MH .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2004, 57 (01) :19-24
[2]   Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by γ radiation [J].
Barner-Kowollik, C ;
Vana, P ;
Quinn, JF ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (08) :1058-1063
[3]   Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium [J].
Barner-Kowollik, C ;
Quinn, JF ;
Morsley, DR ;
Davis, TP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (09) :1353-1365
[4]   The reversible addition-fragmentation chain transfer process and the strength and limitations of modeling: Comment on "the magnitude of the fragmentation rate coefficient" [J].
Barner-Kowollik, C ;
Coote, ML ;
Davis, TP ;
Radom, L ;
Vana, P .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (18) :2828-2832
[5]   Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate [J].
Barner-Kowollik, C ;
Quinn, JF ;
Nguyen, TLU ;
Heuts, JPA ;
Davis, TP .
MACROMOLECULES, 2001, 34 (22) :7849-7857
[6]  
BARNERKOWOLLIK C, 2002, HDB RADICAL POLYM, P208
[7]   Termination kinetics of free-radical polymerization of styrene over an extended temperature and pressure range [J].
Buback, M ;
Kuchta, FD .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 1997, 198 (05) :1455-1480
[8]   CRITICALLY EVALUATED RATE COEFFICIENTS FOR FREE-RADICAL POLYMERIZATION .1. PROPAGATION RATE COEFFICIENT FOR STYRENE [J].
BUBACK, M ;
GILBERT, RG ;
HUTCHINSON, RA ;
KLUMPERMAN, B ;
KUCHTA, FD ;
MANDERS, BG ;
ODRISCOLL, KF ;
RUSSELL, GT ;
SCHWEER, J .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 1995, 196 (10) :3267-3280
[9]   INITIATOR EFFICIENCIES IN 2,2'-AZOISOBUTYRONITRILE-INITIATED FREE-RADICAL POLYMERIZATIONS OF STYRENE [J].
BUBACK, M ;
HUCKESTEIN, B ;
KUCHTA, FD ;
RUSSELL, GT ;
SCHMID, E .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 1994, 195 (06) :2117-2140
[10]   Kinetic and electron spin resonance analysis of RAFT polymerization of styrene [J].
Calitz, FM ;
Tonge, MP ;
Sanderson, RD .
MACROMOLECULES, 2003, 36 (01) :5-8