A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2

被引:563
作者
Verma, Sumit [1 ,2 ]
Kim, Byoungsu [1 ,2 ]
Jhong, Huei-Ru Molly [1 ,2 ]
Ma, Sichao [2 ,3 ]
Kenis, Paul J. A. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, 600 South Mathews Ave, Urbana, IL 61801 USA
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, 744 Moto Oka, Fukuoka 8190395, Japan
[3] Univ Illinois, Dept Chem, 505 South Mathews Ave, Urbana, IL 61801 USA
关键词
carbon dioxide fixation; electrochemistry; energy conversion; renewable resources; electroreduction; CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; SELECTIVE CONVERSION; WATER ELECTROLYSIS; ENHANCED ACTIVITY; METAL-ELECTRODES; CATALYSTS; COPPER; FORMATE; ENERGY;
D O I
10.1002/cssc.201600394
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a gross-margin model to evaluate the technoeconomic feasibility of producing different C-1-C-2 chemicals such as carbon monoxide, formic acid, methanol, methane, ethanol, and ethylene through the electroreduction of CO2. Key performance benchmarks including the maximum operating cell potential (V-max), minimum operating current density (j(min)), Faradaic efficiency (FE), and catalyst durability (t(catdur)) are derived. The V-max values obtained for the different chemicals indicate that CO and HCOOH are the most economically viable products. Selectivity requirements suggest that the coproduction of an economically less feasible chemical (CH3OH, CH4, C2H5OH, C2H4) with a more feasible chemical (CO, HCOOH) can be a strategy to offset the V-max requirements for individual products. Other performance requirements such as j(min) and t(catdur) are also derived, and the feasibility of alternative process designs and operating conditions are evaluated.
引用
收藏
页码:1972 / 1979
页数:8
相关论文
共 65 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[2]  
Ainscough C., 2014, Hydrogen Production Cost From PEM Electrolysis
[3]  
[Anonymous], EL POW MONTHL
[4]  
[Anonymous], 2013, MAN COST AN 10 KW 25
[5]  
[Anonymous], 2010, Marketing Metrics: The Definitive Guide to Measuring Marketing Performance
[6]  
[Anonymous], 2013, HYDROGEN PATHWAYS UP
[7]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[8]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[9]  
Bard A. J., 1985, STANDARD POTENTIALS
[10]   Towards Solar Fuels from Water and CO2 [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CHEMSUSCHEM, 2010, 3 (02) :195-208