Identification of conductivity imperfections of small diameter by boundary measurements. Continous dependence and computational reconstruction

被引:193
作者
Cedio-Fengya, DJ
Moskow, S
Vogelius, MS
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
D O I
10.1088/0266-5611/14/3/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an asymptotic formula for the steady-state voltage potential in the presence of a finite number of diametrically small inhomogeneities with conductivity different from the background conductivity. We use this formula to establish continuous dependence estimates and to design an effective computational identification procedure.
引用
收藏
页码:553 / 595
页数:43
相关论文
共 18 条
[11]   DETERMINING CONDUCTIVITY BY BOUNDARY MEASUREMENTS .2. INTERIOR RESULTS [J].
KOHN, RV ;
VOGELIUS, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (05) :643-667
[12]  
Kress R., 1989, LINEAR INTEGRAL EQUA, V74, P804
[13]  
Liepa V., 1993, Journal of Nondestructive Evaluation, V12, P163, DOI 10.1007/BF00567084
[14]   STABILIZED NUMERICAL ANALYTIC PROLONGATION WITH POLES [J].
MILLER, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 18 (02) :346-&
[15]   Global uniqueness for a two-dimensional inverse boundary value problem [J].
Nachman, AI .
ANNALS OF MATHEMATICS, 1996, 143 (01) :71-96
[16]   A BOUNDARY INTEGRAL-EQUATION METHOD FOR AN INVERSE PROBLEM RELATED TO CRACK DETECTION [J].
NISHIMURA, N ;
KOBAYASHI, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (07) :1371-1387
[17]   VIRTUAL MASS AND POLARIZATION [J].
SCHIFFER, M ;
SZEGO, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 67 (SEP) :130-205
[18]   A GLOBAL UNIQUENESS THEOREM FOR AN INVERSE BOUNDARY-VALUE PROBLEM [J].
SYLVESTER, J ;
UHLMANN, G .
ANNALS OF MATHEMATICS, 1987, 125 (01) :153-169