Changes in soil microbial community structure in a tallgrass prairie chronosequence

被引:205
作者
Allison, VJ [1 ]
Miller, RM
Jastrow, JD
Matamala, R
Zak, DR
机构
[1] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA
[2] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Ecol & Evolut Biol, Ann Arbor, MI 48109 USA
关键词
D O I
10.2136/sssaj2004.0252
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Increasing the abundance of fungi relative to bacteria should favor C accrual, because fungi use C more efficiently, and are composed of more recalcitrant C compounds. We examined changes in soil microbial community structure following cessation of tillage-based agriculture and through subsequent succession in a C-accruing tall-grass prairie restoration chronosequence. We predicted that the relative abundance of fungi would increase following conversion from tillage-based agriculture. Soil microbial community structure was assessed as relative abundances of phospholipid fatty acids (PLFAs). Cessation of tillage-based agriculture did initially lead to an increase in the abundance of fungi, particularly arbuscular mycorrhizal fungi (AMF), relative to bacteria. We suggest this is primarily due to reduced disturbance when tilling ceases. Vegetation characteristics also appear to be important, with high cyclopropyllprecursor PLFA ratios indicating bacterial communities under stress in agricultural soils, probably due to low C, and possibly to low C relative to N inputs. A secondary gradient in soil microbial community structure was related to successional time, and tied to soil characteristics, particularly bulk density (D-b), pH, and soil organic C and N. However, while the fungifbacteria (F/B) ratio was high in early succession plots, it declined later in succession. In addition, although the F/B ratio increased with SOC in the agricultural soils, it decreased with SOC in prairie soils. We conclude that increased community metabolic efficiency due to higher relative abundances of fungi is not the primary mechanism leading to enhanced C storage in these soils.
引用
收藏
页码:1412 / 1421
页数:10
相关论文
共 75 条
[11]  
Betz R. F, 1986, P 9 N AM PRAIR C TRI, P179
[12]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[13]   Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles [J].
Bossio, DA ;
Scow, KM ;
Gunapala, N ;
Graham, KJ .
MICROBIAL ECOLOGY, 1998, 36 (01) :1-12
[14]   Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns [J].
Bossio, DA ;
Scow, KM .
MICROBIAL ECOLOGY, 1998, 35 (03) :265-278
[15]   Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field [J].
Broughton, LC ;
Gross, KL .
OECOLOGIA, 2000, 125 (03) :420-427
[16]   Soil and plant effects on microbial community structure [J].
Buyer, JS ;
Roberts, DP ;
Russek-Cohen, E .
CANADIAN JOURNAL OF MICROBIOLOGY, 2002, 48 (11) :955-964
[17]   Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage [J].
Calderón, FJ ;
Jackson, LE ;
Scow, KM ;
Rolston, DE .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2001, 65 (01) :118-126
[18]   CARBON AND NITROGEN DYNAMICS OF SOIL ORGANIC-MATTER FRACTIONS FROM CULTIVATED GRASSLAND SOILS [J].
CAMBARDELLA, CA ;
ELLIOTT, ET .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (01) :123-130
[19]   Changes in soil microbial community structure with tillage under long-term wheat-fallow management [J].
Drijber, RA ;
Doran, JW ;
Parkhurst, AM ;
Lyon, DJ .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (10) :1419-1430
[20]   Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients [J].
Frey, SD ;
Elliott, ET ;
Paustian, K .
SOIL BIOLOGY & BIOCHEMISTRY, 1999, 31 (04) :573-585