Dynamics of breathers in discrete nonlinear Schrodinger models

被引:51
作者
Johansson, M [1 ]
Aubry, S
Gaididei, YB
Christiansen, PL
Rasmussen, KO
机构
[1] Tech Univ Denmark, Dept Math Modelling, DK-2800 Lyngby, Denmark
[2] CENS, CEA, CNRS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France
[3] Inst Theoret Phys, UA-252143 Kiev, Ukraine
来源
PHYSICA D | 1998年 / 119卷 / 1-2期
关键词
D O I
10.1016/S0167-2789(98)00070-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized vortex-like solutions. We also show that stationary on-site localized excitations can have internal 'breathing' modes which are spatially localized and symmetric. The excitation of these modes leads to slowly decaying, quasiperiodic oscillations. Finally, we show that for some generalizations of the DNLS equation where bistability occurs, a controlled switching between stable states is possible by exciting an internal breathing mode above a threshold value. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 42 条
[21]   SPATIAL PROPERTIES OF INTEGRABLE AND NONINTEGRABLE DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
HENNIG, D ;
SUN, NG ;
GABRIEL, H ;
TSIRONIS, GP .
PHYSICAL REVIEW E, 1995, 52 (01) :255-269
[22]   STUDIES OF POLARON MOTION .1. THE MOLECULAR-CRYSTAL MODEL [J].
HOLSTEIN, T .
ANNALS OF PHYSICS, 1959, 8 (03) :325-342
[23]   ENERGY-TRANSFER VIA SOLITONS IN LANGMUIR-BLODGETT SCHEIBE AGGREGATES [J].
HUTH, GC ;
GUTMANN, F ;
VITIELLO, G .
PHYSICS LETTERS A, 1989, 140 (06) :339-342
[24]   Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrodinger equation [J].
Johansson, M ;
Aubry, S .
NONLINEARITY, 1997, 10 (05) :1151-1178
[25]   Switching between bistable states in a discrete nonlinear model with long-range dispersion [J].
Johansson, M ;
Gaididei, YB ;
Christiansen, PL ;
Rasmussen, KO .
PHYSICAL REVIEW E, 1998, 57 (04) :4739-4742
[26]   EFFECTS OF NONLINEARITY ON THE TIME EVOLUTION OF SINGLE-SITE LOCALIZED STATES IN PERIODIC AND APERIODIC DISCRETE-SYSTEMS [J].
JOHANSSON, M ;
HORNQUIST, M ;
RIKLUND, R .
PHYSICAL REVIEW B, 1995, 52 (01) :231-240
[27]   SELF-TRAPPING ON A DIMER - TIME-DEPENDENT SOLUTIONS OF A DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
KENKRE, VM ;
CAMPBELL, DK .
PHYSICAL REVIEW B, 1986, 34 (07) :4959-4961
[28]   PEIERLS-NABARRO POTENTIAL BARRIER FOR HIGHLY LOCALIZED NONLINEAR MODES [J].
KIVSHAR, YS ;
CAMPBELL, DK .
PHYSICAL REVIEW E, 1993, 48 (04) :3077-3081
[29]  
LAEDKE EW, 1995, JETP LETT+, V62, P677
[30]   STABILITY OF DISCRETE SOLITONS AND QUASICOLLAPSE TO INTRINSICALLY LOCALIZED MODES [J].
LAEDKE, EW ;
SPATSCHEK, KH ;
TURITSYN, SK .
PHYSICAL REVIEW LETTERS, 1994, 73 (08) :1055-1059